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Abstract

This thesis investigates localization of sound sources by the use of 3D-microphone

array. A beamforming method named Spherical Harmonics Beamforming (SHB) has

been developed. The method is based on decomposing the acoustical wave field, mea-

sured on the surface of a sphere, into spherical harmonics, and thereafter extracting

the angular part of the result in order to determine the direction of the wave field.

The SHB-method has been compared with the conventional Delay and Sum Beam-

forming method, and showed improvements both in the directional gain and in the

resolution.

The theoretical investigations in this thesis involves the decomposition of wave

fields into spherical harmonics and Bessel functions, used both for simulations of

acoustical wave fields and in the development of the SHB-method. Numerical inte-

gration on the sphere is examined in order to determine the decomposition constants

of the SHB-response. Furthermore, this thesis involves optimization by error mini-

mization, stability evaluations and an implementation method using FFT.

A test model of the SHB has been constructed, and tested to verify the theoretical

performance of the method.
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Introduction

Microphone arrays are used for determining the direction of a present sound field

or the location from which it originates from. The array and the following array

signal processing is also called a beamformer and the technique is called beamform-

ing . Beamforming can be described as a kind of spatial filtering . The beamformer

can be steered in a particular direction/area in order to enhance signals from that

direction/area and suppress signals from all other directions/areas [5].

Many conventional beamformers are based on planner arrays , where all the micro-

phones are placed in the same two dimensional plane. The disadvantage of this type

of beamformer is that it can not distinguish if the signals are approaching the array

from the front or the back. The planner array beamformer works fine in situations

where the array is placed outside the body from which the sound source originates, but

has a major disadvantage inside confined enclosures, such as car cabins or aeroplane

cabin.

A way to handle this problem is to place the microphones in a three dimensional

array instead of a two dimensional planner array. In this project the position of the

microphones are limited to be on a sphere with constant radius, a. Furthermore, the

possibility of developing the sound field into spherical harmonics has been investi-

gated.
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An overview of the contents of each chapter in this thesis follows:

Chapter 1 starts this thesis with an explanation of why the spherical coordinate

system has been chosen, and of how to describe the acoustical wave field, in

spherical coordinates.

Chapter 2 explains the theory of beamforming and the properties that characterizes

a beamformer response. Hereafter follows the development of the Spherical

Harmonics Beamforming method (SHB), and the properties of the method.

Chapter 3 investigates how to perform numerical spherical integrations in order to

perform the SHB developed in chapter 2.

Chapter 4 is a broad chapter, which analyzes the stability of the SHB, followed by

an optimization of an array with 64 microphones, and finally an implementation

method of the SHB technique.

Chapter 5 compares the performance of the SHB-method with the conventional

Delay & Sum Method (DSB).

Chapter 6 outlines and discusses the results from tests made on the SHB test model.

Chapter 7 gives an overall conclusion of what has been achieved in this thesis, as

well as the perspectives to be used in further studies of sound source localization

using 3D-microphones arrays.

Appendix A explains in more detail about the various tests performed on the SHB

test model as well as showing the results. Appendix B includes lists of symbols, units

and abbreviations used in this thesis. Finally, an index of important words and terms

can be found on the last pages.



Chapter 1

Wave field in spherical coordinates

In this chapter, a detailed explanation of how to express an acoustical wave field in

spherical coordinates, is given, both at any point in space, and in particularly on the

surface of a sphere.

1.1 Introduction

In beamforming, it is common to mix a contour plot of the response of the micro-

phone array, with a picture of the surrounding environment in which the beamformer

operates. This makes it easy to determine where the sound originates from, instead

of dealing with a set of coordinates.

The picture of the surroundings is the response of the optical, and describes the

intensity and wavelength of the light that approaches the lens from a particular angle

of incidence. To get a picture of the surroundings, all around the microphone array,

in all possible directions in the space, it is necessary to combine the picture from more

wide-angle lens cameras.

In the same way as the camera, the response of the microphone array describes

both the intensity and wavelength (or frequency), but for the sound field instead of the

light. To combine these two graphical responses, a common coordinate system should

be chosen. The spherical coordinate system is the most appropriate for describing

the angle of incidence of both the light and the sound.
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1.2 Spherical Coordinates

Figure 1.1: Definition of spherical coordinates.

The spherical coordinate system has three coordinates (θ, φ, r) . θ describes the

elevation, φ the azimuth and r the radius from origo. A point in the spherical

coordinate system can be found in the cartesian coordinate system {x, y, z} as
x

y

z

 = r ·


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 . (1.2.1)

The definition of both the cartesian and the spherical axes is shown in figure 1.1.

1.3 Wave equation in spherical coordinates

The wave equation used to describe the wave field in acoustics, is in spherical coordi-

nates [14] [13]
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1

R

∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
=

1

c2

∂2Φ

∂t2
, (1.3.1)

where the solution, Φ, is the velocity potential of the acoustical wave field. In this

project the solution to the wave equation is not discussed, but just shown here. The

details for this can be found in [1] and [14]. The solution to equation 1.3.1 can be

written, by the separation of the variables, as a product of four functions

Φ(r, θ, φ, t) = R(r) U(θ) V (φ) T (t). (1.3.2)

The first function, R(r), depends solely on the radius, r, and the solution can be

described by using spherical Bessel functions . U(θ) and V (φ) depend on the angles,

θ and φ, and the solution to these can be described by using spherical harmonics.

The time dependency is separated to the function T (t). In this thesis, time harmonic

signals are assumed, defined as

T (t) = e−iωt, (1.3.3)

where ω is the angular frequency related to the frequency as ω = 2πf .

The velocity potential can be used to find the sound pressure, p, as

p = ρ0
∂Φ

∂t
, (1.3.4)

where ρ0 is the density of the media. The particle velocity , −→u , can be found as the

gradient of the velocity potential, as

−→u = −∇Φ. (1.3.5)
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1.4 Spherical Harmonics

The spherical harmonics play a major role in this thesis, and especially for the an-

gular part of the velocity potential, and are therefore discussed in detail in this section.

Any complex function, f ∈ S2, can be described by a linear combination of spher-

ical harmonics (S2 is the space defined on a sphere of constant radius). The spherical

harmonics act as a set of basis functions.

f (θ, φ) =
∞∑

n=0

n∑
m=−n

Am
n Y m

n (θ, φ) (1.4.1)

Am
n are a set of decomposition constants , and Y m

n are the spherical harmonics defined

as

Y m
n (θ, φ) = ξm

n Pm
n (cos θ) · eimφ (1.4.2)

with

ξm
n =

√
2n + 1

4π

(n− |m|)!
(n + |m|)!

. (1.4.3)

Pm
n (x) are the so called associated Legendre polynomials , where n denotes the degree,

and m the order (n = {0, 1, 2...} and m = {−n,−n+1, ..0, 1...n−1, n}). The constant

ξm
n is a normalization constant made to satisfy∫ 2π

0

∫ π

0

Y m
n (θ, φ) Y m′

n′ (θ, φ) sin θdθdφ = δnn′δmm′ . (1.4.4)

The top bar in Y m
n denotes the complex conjugate of Y m

n , and δnm is the mathemat-

ical Kronecker delta. Equation 1.4.4 is a very important property of the spherical

harmonics, which means that the spherical harmonics are a set of orthonormal basis

functions.
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Equation 1.4.4, can also be used to determine the constants, Am
n in 1.4.1, by

multiplying both sides of 1.4.1 with the complex conjugate of the spherical harmonics,

and then integrating over S2, we get

∫ 2π

0

∫ π

0
f (θ, φ) Y m′

n′ (θ, φ) sin θdθdφ =
∫ 2π

0

∫ π

0

∞∑
n=0

n∑
m=−n

Am
n Y m

n (θ, φ)Y m′
n′ (θ, φ) sin θdθdφ

⇓∫ 2π

0

∫ π

0
f (θ, φ) Y m′

n′ (θ, φ) sin θdθdφ =
∞∑

n=0

n∑
m=−n

Am
n δnn′δmm′

⇓
Am

n =
∫ 2π

0

∫ π

0
f (θ, φ) Y m

n (θ, φ) sin θdθdφ.

(1.4.5)

It is then possible to describe any function in the spherical coordinate system by the

use of spherical harmonics. The decomposition constants are found by the double

integral in equation 1.4.5.

1.5 Sound field on sphere

In this section, we look into how the sound field on a sphere can be described by

spherical harmonics and spherical Bessel functions . We look at two specific situations;

first a transparent sphere, where the sound wave can propagate undisturbed through

the sphere, and next a hard sphere, where the incident sound wave is scattered at

the surface of the sphere. Furthermore, we look at two different incident waves; the

plane wave and the spherical wave originating from a point outside the sphere. The

time dependency , T (t), is omitted in the expression of the velocity potential, Φ.

Φ = Φ(r, θ, φ) = R(r) U(θ) V (φ) (1.5.1)

For a plane incident wave approaching the acoustically transparent sphere from the

angles θ0 and φ0 the velocity potential at (r, φ, θ) is [1] [14]
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Φ = Φi =
∞∑

n=0

in · [jn(kr)] ·
n∑

m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ). (1.5.2)

The radial part is described by the spherical Bessel functions of first kind, jn. Gener-

ally, the radial part is described by a combination of spherical Bessel functions of first

kind and spherical Neumann functions , nn, but the spherical Neumann approaches

infinity at origo [1]. Inclusion of the spherical Neumann functions will then represent

a point source at origo. In this case, where the sphere is acoustically transparent, the

value of the velocity potential is finite at origo, which is why it is sufficient to use

only spherical Bessel functions of the first kind. The center of the sphere is placed at

origo. k is the wave number, related to the frequency, f , as

k =
ω

c
=

2πf

c
, (1.5.3)

where c is the propagation speed of sound and ω is the angular frequency .

The spherical Bessel and spherical Neumann functions, jn and nn, are given by

the normal cylindrical Bessel and cylindrical Neumann functions, Jn and Nn, as

jn(z) =
√

π
2z
· Jn+1/2

(z)

nn(z) =
√

π
2z
·Nn+1/2

(z).

(1.5.4)

Jn is also called the Bessel function of the first kind, and the Neumann funtion Nn is

called the Bessel function of the second kind. Equation 1.5.2 can be used to describe

the velocity potential at any point in the room. To calculate the field on the surface

of an acoustically transparent sphere, choose r = a.

In the case of a spherical incident wave originating from a point, at radius r0,

outside the sphere of radius, a, the velocity potential at (r, φ, θ) is
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Φ = Φi = i
∞∑

n=0

h(1)
n (kr>) · [jn(kr<)] ·

n∑
m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ), (1.5.5)

where the radii, r> and r<, depends on the position of r and r0

r> = r ∧ r< = r0 for r ≥ r0

r> = r0 ∧ r< = r for r < r0.

(1.5.6)

To find the wave field on the sphere of radius a, originating from the point source at

radius r0, equation 1.5.7 would be

Φ = Φi = i
∞∑

n=0

h(1)
n (kr0) · [jn(ka)] ·

n∑
m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ). (1.5.7)

h
(1)
n is the spherical Hankel function of the first kind, defined as

h(1)
n (z) = jn(z) + i · nn(z). (1.5.8)

If the surface of the sphere is hard, so that the incident wave field is scattered, the total

sound field will be a combination of both the incoming field, Φi, and the scattered

field, Φsc.

Φ = Φi + Φs (1.5.9)

For the case where the incident wave is plane, the total wave field is [1]

Φ = Φi + Φs =
∞∑

n=0

in ·
[
jn(kr)− a′n · h(1)

n (kr)
]
·

n∑
m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ). (1.5.10)
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Note that the radial part now contains the spherical Neumann functions, which rep-

resent the scattered wave. We do not now have the singularity problem at r = 0,

since the shell of the sphere is hard, and we only look at the wave field outside the

scattering surface. The acoustical center of the scattered wave is at the center of the

sphere.

The constant a′n in 1.5.10 is found by looking at the boundary condition on the

surface of the sphere. We know that the particle velocity at the surface of a hard

rigid body is zero. Using this, and the fact that the particle velocity is proportional

to the first derivative of the velocity potential with respect to r (see equation 1.3.5),

we get

∂Φ
∂r

∣∣
r=a

= 0

⇓
∂jn(kr)

∂r

∣∣∣
r=a

− a′n ·
∂h

(1)
n (kr)
∂r

∣∣∣
r=a

= 0

m
j′n(ka)− a′nh

(1)
n

′(ka) = 0

m
a′n = j′

n(ka)

h
(1)
n

′(ka)
.

(1.5.11)

Finally, in the case of a spherical incident wave, the total wave field will be [1] [14]

Φ = i ·
∞∑

n=0

h(1)
n (kr0)

[
jn(kr)− a′n · h(1)

n (kr)
]
·

n∑
m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ). (1.5.12)

Summing up on these four situations, we can write the velocity potential from equa-

tion 1.5.2, 1.5.7, 1.5.10 and 1.5.12 as a general expression (equation 1.5.13).

Φ(r, θ, φ) =
∞∑

n=0

Rn(r, r0) ·
n∑

m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ) (1.5.13)
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The radial part, Rn, contains the information that decides whether the sphere is hard

or transparent, and if the incident wave is plane or spherical. Table 1.1 shows Rn in

these four situations.

Rn Hard Transparent

Plane wave in · [jn(ka)− a′n · h
(1)
n (ka)] in · jn(ka)

Spherical wave i · h(1)
n (kr0)[jn(ka)− a′n · h

(1)
n (ka)] i · h(1)

n (kr0) · jn(ka)

Table 1.1: Radial part, Rn, of the velocity potential of sound field in spherical
coordinates.
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1.6 Simulation of sound field

The formula in equation 1.5.13, using the appropriate radial part, Rn, from tabel

1.1, can be used to calculate the sound field at any point in the room, both outside

the hard rigid sphere, as well as inside and outside the transparent sphere. The

transparent sphere is equivalent to having no sphere present at all.

Figure 1.2: Incident plane wave travelling in the positive x-direction. Left: Absolute value
of the sound field travelling undisturbed through a transparent sphere. Right: The same
field scattered on a hard rigid sphere. Note the interference of the incident and the scattered
field on the right. (ka = 5, and radius of sphere a = 0.3)

Having a plane incident wave travelling in the positive x direction, the field in the

xy-plane (z = 0) is simulated using MATLAB, to the degree, N = 100, of spherical

harmonics. This is illustrated in figure 1.2 using a sphere of radius a = 0.3m (seen

at the center of the figure), and at the frequency ka = 5. Using higher degrees of

spherical harmonics does not give a noticeable difference in the plotting. The colour

in the xy-plane at z = 0 represents the absolute value of the velocity potential, which

is proportional to the absolute value of the sound pressure (see equation 1.3.4). The

left picture of figure 1.2, shows the case of a transparent sphere, where the plane sound

wave travels undisturbed through the sphere (the overall red colour indicates that the

intensity of the pressure field is constant). The right picture shows the situation of a

hard rigid scattering sphere. The incoming plane wave interferes with the scattered
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wave, resulting in an interference pattern where the intensity varies throughout the

plane.

Figure 1.3: Incident spherical wave from point source placed at (x, y, z) = (−0.6, 0, 0).
The development into spherical harmonics is made to the degree N = 50. Left shows the
situation with the transparent sphere, and right the hard rigid sphere. (ka = 5, and radius
of sphere a = 0.3)

Figure 1.3 shows another situation, where the incident wave is spherical and origi-

nates from a point source located at -0.60 m on the x-axis. Again the field is simulated

at the same plane, for both the transparent sphere (left), and for the scattering sphere

(right). The scaling of the colour is logarithmical, because the value of the sound pres-

sure at the center of the point source is approaching infinity. Otherwise, it will not

be possible to see the interference pattern for the scattering sphere, and the xy-plane

would be completely blue, except for a red dot at the point source location.

Equation 1.5.13 can also be used to calculate the wave field on the surface of a

sphere. Figure 1.4 shows the relative amplitude distribution of the sound pressure

over a sphere, for a plane wave travelling in the positive x-direction, at ka = 1.

What cannot be seen in figure 1.4, is that the pressure rises at the back of the sphere

as expected (see [11]). The sound pressure at the black equator line in figure 1.4, is

shown in figure 1.5. Here it is also shown how the amplitude of the pressure converges;

at N = 3, it is very close to the exact solution. To calculate the sound pressure at

positions outside the sphere, the maximum degree of spherical harmonics necessary to
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Figure 1.4: Sound field on scattering
sphere at ka = 1.

Figure 1.5: Relative amplitude of pressure on the surface of the
scattering sphere at ka = 1.
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get a result as close as possible to the exact solution, depends on the radius r. Figure

1.6 illustrates this at ka = 1; for N = 5, the error is already noticeable at r = 3a,

for N = 10, the error is noticeable at around r = 7a and for N = 15, it is possible

to calculate the wave field at distances around r < 10a. So, when including higher

degrees of spherical harmonics, it is possible to calculate the wave field at greater

distances from the sphere.

The error of the wave field depends also on the frequency, which results in the

need for higher degree, N , at higher frequency. To illustrate this, an expression for

how the amplitude of the wave field converges as a function of the frequency, ka,

and the degree, N , has been defined (equation 1.6.1). This function is based on the

situation shown in figure 1.5; the amplitude of the pressure at the equator, for a plane

incident wave approaching from (θ0, φ0) = (π/2, 0)[rad].

Figure 1.6: Relative amplitude of pressure at radius relative to the
radius of the sphere for ka = 1. At distances further away from the
sphere, higher degree of spherical harmonics is required.
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µN(ka) ≡ 1

2π

2π∫
0

∣∣ΦN(π
2
, φ)− ΦN−1(

π
2
, φ)
∣∣∣∣Φ∞(π

2
, φ)
∣∣ dφ (1.6.1)

Using equation 1.6.1, we get an idea of how much each step from N − 1 to N con-

tributes,
∣∣ΦN(π

2
, φ)− ΦN−1(

π
2
, φ)
∣∣, to the final amplitude of the wave field,

∣∣Φ∞(π
2
, φ)
∣∣,

in average around the equator of the sphere.

N µN(ka = 0.1) µN(ka = 1) µN(ka = 10)
1 0.096158 0.76179 0.24145
2 0.0027986 0.23824 0.31493
3 5.0284e-005 0.043073 0.37429
4 6.5479e-007 0.0056282 0.43028
5 6.7271e-009 0.00058077 0.48631
6 5.72e-011 4.9789e-005 0.54908
7 4.1478e-013 3.6146e-006 0.61556
8 2.66e-015 2.258e-007 0.682
9 1.4888e-017 1.2735e-008 0.7336
10 7.5699e-020 6.4321e-010 0.68891
20 1.1275e-044 9.87e-025 3.908e-005
30 1.0282e-071 8.9248e-042 5.1973e-012

Table 1.2: µN (ka) at different values of ka, and different values of
N, showing that the ΦN converges faster at low frequencies.

If the contribution from each step converges, then ΦN must converge towards the

exact solution when N →∞. This is calculated numerically from 360 discrete points

around the equator, as in figure 1.4 and 1.5, and Φ50 is used for Φ∞ (higher N did

not show any changes on the first five decimals of µN). The results are listed in table

1.2.

When developing a wave field into spherical harmonics and spherical Bessel func-

tions, there exist two major factors that determine how high a degree, N , is needed

to get an acceptable result; namely r and ka. Generally, a higher N is needed when:

• The radius for the point of calculation increases.
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• The frequency increases.

1.7 Chapter summary

A discussion of the acoustical wave field in spherical harmonics is made, leading to

a general expression of the wave field 1.5.13, using spherical harmonics and spherical

Bessel functions. The expression can be used in both the situations of having either

a plane incoming wave field or a spherical incoming wave field, by choosing the ap-

propriate radial part from table 1.1. In table 1.1, it is furthermore possible to choose

between a scattering sphere or a transparent sphere.

In section 1.6, some examples of simulations are made to get an idea of how high

degree, N , of the spherical harmonics and order of the spherical Bessel functions, are

needed to calculate a suitable wave field at a given point using 1.5.13. Generally, if

the frequency or the distance increases, higher degree, N , is needed.



Chapter 2

Spherical Harmonics Beamforming

In this chapter, the concept of beamforming and the parameters characterizing the

performance of a beamformer response are discussed. This is followed by the devel-

opment of a method to perform beamforming by using spherical harmonics, and this

method is named Spherical Harmonics Beamforming(SHB).

The work in this chapter has been inspired by the work of P. Thushara D. Ab-

hayapala who has described the theory of modal analysis of beamforming [5]. He has

used it for radial transformations from near field into far field beamforming. Among

other interesting studies on this subject is the work of Hulseboe, Vries and Bourdillat

who have used a circular array of microphones to decompose the sound field into

cylindrical harmonics for a recreation of the sound field in the horizontal plane [6].

2.1 Introduction

In the concept of beamforming, there exists three stages. The first stage is the

measurement or detection of the sound field performed by the hardware; i.e. the

microphone array. The next stage is the computation of the measured signals. In

this stage, the algorithm steers the microphone array in order to amplify the signal

from a given direction, and suppress the signals from other directions. This is also

called spatial filtering . This computational stage could also include a filtering in the

frequency domain (i.e. low-pass filtering, FFT etc.). The last stage is the read out,

usually done as a contour plot, mixed with a picture of the surroundings in which the
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microphone array is placed. The picture is taken by a camera placed in connection

with the array.

The beamformer response is a general expression for the output of the beamform-

ing algorithm, and there exists two types; beampattern and steered response. The

difference between them is [10]:

Beampattern The microphone array is steered in one direction, while the angle of

the incoming wave field is varied.

Steered response The angle of the incoming wave field is set, and the steering

direction is varied.

These two beamformer responses can appear very similar, but can differ in cases

where the array is good at steering in one direction. In this thesis, the beamformer

response is denoted as b(θ, φ, θ0, φ0), where (θ, φ) is the steering direction and (θ0, φ0)

is the angle of the incident wave field.

Figure 2.1: Beamformer response in one dimension with mainlobe
and sidelobes
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The beamformer response is characterized by having a mainlobe in the (θ0, φ0)

direction, and sidelobes in other directions, see figure 2.1. The performance of the

beamformer is described by its resolution and the attenuation of the sidelobes. The

resolution is determined by the width of the mainlobe, which should be as little as

possible, measured by the Full Width Half Max (FWHM). This value determines the

minimum angle between two incoming waves, where it is possible to distinguish them

from each other. The attenuation of the sidelobes is described by the level of the

biggest sidelobe, the Maximum Sidelobe Level (MSL), relative to the mainlobe. The

term directional gain (DG), is also used and is related to MSL as: DG = −MSL[dB]

(see [2], [3] and [10]).

2.2 Spherical Harmonics Beamformer response

The ideal beamformer response from a spherical microphone array, is a function hav-

ing a maximum value proportional to the field strength when looking in the direction

of an incoming wave field, and zero when looking in all other directions. A func-

tion with this property is the delta function and is denoted by δ(x − x0). The ideal

beamformer response could then be expressed as

bideal (θ, φ, θ0, φ0) = δ (θ − θ0) δ (φ− φ0) . (2.2.1)

The angles (θ, φ) denote the steering direction, and (θ0, φ0) denote the direction in

which the incoming wave approaches the microphone array from. If we decompose

the ideal beamformer response 2.2.1 into spherical harmonics, using equation 1.4.1

and 1.4.5, we get

bideal (θ, φ, θ0, φ0) =
∞∑

n=0

n∑
m=−n

αn,m
idealY

m
n (θ, φ)

αn,m
ideal =

∫ 2π

0

∫ π

0
δ (θ − θ0) δ (φ− φ0) Y m

n (θ, φ) sin θdθdφ.

(2.2.2)
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The integral property of the delta function results in the following decomposition

constants

αn,m
ideal = Y m

n (θ0, φ0) . (2.2.3)

The ideal beamformer response decomposed into N th degree of spherical harmonics

can now be written as

bN (θ, φ, θ0, φ0) =
N∑

n=0

n∑
m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ)

→ bideal (θ, φ, θ0, φ0) for N →∞.

(2.2.4)

When decomposing the beamformer response into higher degrees of spherical har-

monics, it approaches the delta function.

The next problem is then to retrieve this from the wave field on a sphere of radius,

a. The wave field in spherical harmonics (as described in equation 1.5.13) looks very

similar to the the ideal beamformer response (equation 2.2.4) apart from the radial

part, Rn.

Proposition 2.2.1. The ideal beamformer response decomposed to N th degree of

spherical harmonics, can be obtained from the wave field, Φa, on a sphere of constant

radius a, as

bN(θ, φ, θ0, φ0) =
N∑

n=0

n∑
m=−n

Am
n

Rn(a, r0)
· Y m

n (θ, φ), (2.2.5)

where

Am
n =

∫ 2π

0

∫ π

0

Φa (θ, φ, θ0, φ0) Y m
n (θ, φ) sin θdθdφ. (2.2.6)
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Proof. Inserting the wave field Φa, on the sphere of radius a, from equation 1.5.13

into equation 2.2.6, the constants Am
n are

Am
n =

∫ 2π

0

∫ π

0

[
∞∑

n′=0

Rn′(a, r0)
n′∑

m′=−n′
Y m′

n′ (θ0, φ0) · Y m′

n′ (θ, φ)

]
Y m

n (θ, φ) sin θdθdφ

m

Am
n =

∞∑
n′=0

n′∑
m′=−n′

Rn′(a, r0) · Y m′
n′ (θ0, φ0) ·

∫ 2π

0

∫ π

0
Y m′

n′ (θ, φ) · Y m
n (θ, φ) · sin θdθdφ.

(2.2.7)

From equation 1.4.4, we know that the double integral in 2.2.7 equals one when n′ = n

and m′ = m, and zero otherwise. Equation 2.2.7 can then be reduced to

Am
n = Rn(a, r0) · Y m

n (θ0, φ0). (2.2.8)

Inserting this into equation 2.2.5, we get

bN(θ, φ, θ0, φ0) =
N∑

n=0

n∑
m=−n

Rn(a,r0)·Y m
n (θ0,φ0)

Rn(a,r0)
· Y m

n (θ, φ)

=
N∑

n=0

n∑
m=−n

Y m
n (θ0, φ0) · Y m

n (θ, φ),

(2.2.9)

which is the same as equation 2.2.4.

Equation 2.2.5 and 2.2.6 are the basic equations needed to obtain a SHB-response

from a spherical microphone array, if the acoustical wave field is known in the entire

space S2 on the sphere of radius a. In the division by the radial part, Rn(a, r0), in

equation 2.2.5, the known radius of the sphere, a, is needed, as well as the distance

to the acoustical center, r0, for the incoming spherical wave. This distance is not

necessarily known and can be considered as a focusing radius (the consequences of

this will be discussed later).
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2.3 Properties of the SHB response

The ideal beamformer response, found using equation 2.2.4 at a limited degree of

spherical harmonics, N , is characterized by having one mainlobe in the (θ0, φ0) direc-

tion and N sidelobes symmetrically around the mainlobe. This can be seen in figure

2.2.

Figure 2.2: Ideal beamformer response, b(θ, φ), with (θ0, φ0) = (π/2, 0). (A)
N=1, (B) N=3 and (C) N=5.

The ideal SHB-response is rotational symmetric around the axis in the direction of

the incoming wave (θ0, φ0). The symmetry itself is however independent of the direc-

tion (θ0, φ0). This is illustrated in figure 2.3. The performance of the SHB response

is therefore the same in all directions of the 4π-room, also called omnidirectional .

Figure 2.3: Ideal beamformer response, b(θ, φ), with different values
of (θ0, φ0).

When using higher degrees of spherical harmonics, the width of the mainlobe

decreases, which results in a better resolution (see figure 2.4), and the attenuation of

the sidelobes is larger, especially for the far sidelobes. The first sidelobe (nearest the



2.3. PROPERTIES OF THE SHB RESPONSE 24

mainlobe) does not decrease significantly when N reaches a value of 6 or more, but

it moves closer to the mainlobe (note that bN(φ) for N = 20 in figure 2.4 is closer to

the delta function than for N = 5 or N = 1).

Figure 2.4: Absolute value of ideal spherical harmonics beamformer
response, developed to different degrees of N .

The most significant sidelobe at low degree of spherical harmonics, N ≤ 6, is the

backlobe. (The backlobe is the sidelobe in the opposite direction of the mainlobe). At

higher degrees, N > 6, the attenuation of the backlobe increases further, and the first

sidelobe becomes the most significant, with an MSL of -17 dB, see figure 2.5. Figure

2.5 also shows the resolution measured as the FWHM of the mainlobe. The FWHM

decreases rapidly at low N , from 143o at N = 1 to under 45o at N = 5.

In general, both the resolution and the attenuation of sidelobes increase when

using higher degrees of spherical harmonics, but most significantly for N ≤ 6.
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Figure 2.5: Sidelobe attenuation and resolution of the ideal beam-
former response of degree N.

2.4 Focusing radius

When operating with the SHB, the distance to the acoustical center of the sound

source is usually not known, but is required when calculating the beamformer re-

sponse, bN , (see equation 2.2.5). In this section, we examine the consequences of

choosing a focusing radius , that is not the same as the actual radius.

In equation 2.2.9, we anticipated that the radius, r0, was known. In the case

where we do not know from what distance the incoming wave originated from, we

would have to guess the radius, and this radius we call the focusing radius, denoted

rfoc. Using this focusing radius, we get the following beamformer response

bN(θ, φ, θ0, φ0) =
N∑

n=0

n∑
m=−n

Rn(a, r0)

Rn(a, rfoc)
· Y m

n (θ0, φ0) · Y m
n (θ, φ). (2.4.1)

This means, that the different degrees, n, of the beamformer response gets weighted

incorrectly, since the radial part, Rn, does not cancel out in equation 2.4.1. Figure
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2.6 shows what happens to |bN |, for N = 5 at low frequencies, ka = 1.

Figure 2.6: Consequences of focusing radius at low frequency, ka = 1. (A) rfoc = 2a and
plane wave approaching. (B) rfoc = r0 the right focusing radius. (C) point source at r0 = 2a
and radius focused for plane waves.

If the incoming wave is plane and we focus the beamformer at the distance two

times the radius of the sphere, rfoc = 2a, we get a response where the mainlobe is

wider and the sidelobes are lower than expected (see figure 2.6 A). In the opposite

case, where the incoming wave originates from a distance two times the radius, and

the beamformer is focussed at high radius, we get a response where the mainlobe is

narrower but the sidelobes are higher than expected (see figure 2.6 C). Figure 2.6 B

shows the right focusing radius. The problem is worst at low frequencies. Figure 2.7

shows the same situations as figure 2.6 but at a higher frequency, ka = 5.

The result of a wrong focusing radius is that if the focusing radius is too low,

the beamformer response will have worse resolution, but a larger attenuation of the

sidelobes. If the focusing radius is too high, then the resolution is improved but at

the cost of lower attenuation of the sidelobes.
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Figure 2.7: Consequences of focusing radius at high frequency, ka = 5. (A) rfoc = 2a and
plane wave approaching. (B) rfoc = r0 the right focusing radius. (C) point source at r0 = 2a
and radius focused for plane waves.

2.5 Chapter summary

To sum up this chapter, a list of design steps to achieve the beamformer response

in equation 2.2.5, of the developed Spherical Harmonics Beamforming-method, is

presented. Furthermore, it gives the reader an overview of the main equations in this

chapter.

1. Decide what type of sphere to use. Hard scattering sphere or an transparent

sphere.

2. Determine the sound field on the sphere (or measure using microphones).

3. Calculate the decomposition constants of equation 2.2.6, using the sound field.

4. Insert these constants in equation 2.2.5, to determine the beamformer response.

5. Set the focusing radius to determine the radial part, Rn, of the beamformer

response.

The properties of the SHB-method have been investigated, and the performance

showed to be omnidirectional. Furthermore, the investigations showed that the MSL
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and the FWHM of the beamformer response both decrease (i.e. improved directional

gain and resolution), when higher N is included.

The next challenge is step 2 on the above list, determining the sound field on the

sphere from a limited amount of discrete points on the sphere. This is discussed in

the next chapter.



Chapter 3

Numerical Integration on the
Sphere

One of the major problems in this project is to perform the surface integral for deter-

mining the decomposition constant of the beamformer response in spherical harmon-

ics, 2.2.5, and achieve a result as close as possible to the ideal constants 2.2.3. The

integral needed to be solved is

Am
n =

∫ 2π

0

∫ π

0

Φa (θ, φ) Y m
n (θ, φ) sin θdθdφ. (3.0.1)

In the practical implementation, it is impossible to measure the continuous variation

of the sound field on the spherical surface of radius a. It is only possible to measure

the sound field at discrete points by the use of microphones. This leads to the inves-

tigation of numerical integration of spherical functions on the sphere. An expression

of the error on the decomposition constants, caused by using the selected numerical

integration method, is found. This chapter uses the shorter notation x0 = (θ0, φ0)

for the angle of the incoming wave field, and xq = (θq, φq) for the coordinates of the

points on the sphere representing the microphone positions.
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3.1 Introduction

The most common and simple method for performing numerical integration is the

cubature rule [15] [8]

F =

Q∑
q=1

wqf(xq), (3.1.1)

where the function needed to be integrated is f . However, the values of f are only

known at the discrete set of Q points, −→x = {x1, x2...xQ}. wq is the cubature weight

at xq. Using this numerical integration method, the decomposition constants for the

beamformer response can be found as

αm
n (x0) =

Am
n (x0)

Rn(r0, a)
=

1

Rn(r0, a)

Q∑
q=1

wqΦa(x0, xq)Y m
n (xq). (3.1.2)

Firstly, a method for determining the cubature weights by using a reproducing

kernel is discussed. Then in section 3.3 the work of Hardin and Sloane, who have

worked on finding optimal designs for spherical integration on a sphere, by using equal

cubature weights, is outlined.

3.2 Reproducing kernel

The cubature weights can be found by solving the following matrix equation [15]

G−→w = −→e , (3.2.1)

where −→w is a vector containing the cubature weights, −→e is a vector of 1’s and G is

the reproducing kernel matrix. The elements of the reproducing kernel matrix , are

found from the orthonormal set of basis functions, which in this case are the spherical

harmonics, as [15]

GN(x, y) =
N∑

n=0

n∑
m=−n

Y m
n (x)Y m

n (y), (3.2.2)
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where x, y ∈ S2. The property of the reproducing kernel can be seen in the following

proposition.

Proposition 3.2.1. Having a function p ∈ PN(S2), where PN is the space of spherical

polynomials of degree at most N , the reproducing kernel has the property

(p(x), GN(x, y))x = p(y), (3.2.3)

where (p, g)x denotes the inner product, with x as the integration variable, defined as

(p, q)x ≡
∫
S2

p(x)q(x)ds(x). (3.2.4)

Proof. In equation 3.2.2 we saw the definition of the reproducing kernel, and by

inserting that into equation 3.2.3 we get

(p(x), GN(x, y))x =
∫
S2

p(x)
N∑

n=0

n∑
m=−n

Y m
n (x)Y m

n (y)ds(x)

=
N∑

n=0

n∑
m=−n

(∫
S2

p(x)Y m
n (x)ds(x)

)
Y m

n (y). (3.2.5)

If we decompose p into spherical harmonics, we only need to include spherical harmon-

ics at most degree N because p ∈ PN(S2). From equation 1.4.5 we get the following

decomposition constants

Am
n =

∫
S2

p(x)Y m
n (x)ds(x). (3.2.6)

and by using 1.4.1 we can retrieve p at a given point, y, as
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p(y) =
N∑
n

n∑
m=−n

Am
n Y m

n (y)

=
N∑
n

n∑
m=−n

∫
S2

p(x)Y m
n (x)ds(x)Y m

n (y)

= (p(x), GN(x, y))x.

(3.2.7)

Given a fundamental system, −→x = {x1, ..., xdN
}, where dN is the number of points,

it is possible to find p(x) at these fundamental points, −→x , as

p(xi) = (p(x), GN(x, xi)), i = 1, ..., dN , (3.2.8)

and GN(x, xi) is called the reproducing kernel basis , also denoted as gi(x) = GN(x, xi).

This still requires that p is known at any point on S2, and this is why the discrete

inner product is introduced by using the cubature rule 3.1.1

(p(x), q(x)) =

dN∑
j=1

wjp(xj)q(xj), (3.2.9)

and by using this in equation 3.2.8, we get

p(xi) =
dN∑
j=1

wjp(xj)GN(xj, xi) xi, xj = 1, ..., dN . (3.2.10)

This can be written as a set of equations, and by introducing gi,j = GN(xi, xj) we get

the following matrix equation



p(x1)
...

p(xi)
...

p(xdN
)


=



p(x1)g1,1 · · · p(xj)gj,1 · · · p(xdN
)gdN ,1

...
. . .

...
...

p(x1)g1,i · · · p(xj)gj,i · · · p(xdN
)gdN ,i

...
...

. . .
...

p(x1)g1,dN
· · · p(xj)gj,dN

· · · p(xdN
)gdN ,dN





w1

...

wj

...

wdN


.

(3.2.11)
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As in one dimension where two points are required to find a polynomial of first

degree, three points to find a polynomial of second degree, and (N +1) points to find

a polynomial of N th degree, the number of points required in two dimensions to find

a polynomial of N th degree is dN = (N + 1)2 (see, for example [15]). In order to find

p(x) ∈ PN exact, we need dN = (N + 1)2 number of points. Solving this in the case

where p(x) = 1 in the entire space, x ∈ S2, we get the equation as in 3.2.1



g1,1 · · · gj,1 · · · gdN ,1

...
. . .

...
...

g1,i · · · gj,i · · · gdN ,i

...
...

. . .
...

g1,dN
· · · gj,dN

· · · gdN ,dN





w1

...

wj

...

wdN


=



1
...

1
...

1


⇔ G−→w = −→e . (3.2.12)

We now have a tool to find the cubature weights of equation 3.1.1 from a set of

discrete basis points, −→x = {x1, ...xdN
}, on the surface S2. Having found the cubature

weights, −→w , we can calculate the numerical integration of a function, f ∈ PN , on

the sphere exactly, if the number of points satisfy dN = (N + 1)2. This method

is optimized for integrating spherical polynomials , but the spherical polynomials are

closely related to the spherical harmonics used as the basis functions.

3.3 Spherical t-designs

Another simpler way of using the cubature rule for numerical integration, is by choos-

ing equal cubature weights, also called the quasi-Monte Carlo cubature rule. Equation

3.1.1 can then be written as [15]

F =
1

Q

Q∑
q=1

f(xq). (3.3.1)
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One of the advantages of using quasi-Monte Carlo, is that we are not restricted to

use a quadratic number of points, as in the case of using the reproducing kernel. In

this thesis, the work of Hardin and Sloane [7], has been a major inspiration for the

use of this method. Hardin and Sloane have investigated different spherical designs

with high order of symmetry, in order to perform the numerical integration exactly,

including as high as possible degree of spherical polynomials. A spherical design

constructed by a set of Q points, −→x = {x1, ..., xQ} on the unit sphere S2 forms a

spherical t-design if the identity

∫
S2

f(x)ds(x) =
1

Q

Q∑
q=1

f(xq) (3.3.2)

holds for all polynomials f of degree ≤ t [7]. (In this section, t is not the symbol for

time, but symbolizes the degree of spherical polynomials.)

Q τ(Q) Symmetry order Symmetry description
24 7 24 improved snub cube
25 5 10 102 + 5
36 8 12 3 snub tetrahedra
48 9 24 2 snub cubes
60 10 12 5 snub tetrahedra
64 10 12 125 + 4

Table 3.1: Properties of selected spherical t-designs. τ denotes the
highest degree of spherical polynomials possible for exact integration.

The highest possible degree of spherical polynomials that satisfy equation 3.3.2

from a specific set of Q points, is denoted τ(Q). Hardin and Sloane have searched for

systems consisting of 1 point up to 100 points, which have the highest τ(Q), and they

have listed the results with the highest order of symmetry (see [7]). Table 3.1 lists

some of the results that show very high τ from a relatively low number of points Q.

For comparison, Q = 25 is also listed to show that a higher number of points, does

not necessarily result in a higher τ(Q). It is possible to perform an exact integration

up to a degree of spherical polynomials at most 7 from only 24 points, but with just
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one more point, it is only possible to perform an exact integration to a degree at most

5.

In the practical design of the spherical beamformer, and for the directivity of the

beamformer response, a high order of symmetry would be an advantage. For example,

a symmetry order of 12 would mean that one basis point can by the use of symmetry

operators be mapped at 12 different symmetrical positions. Therefore, to construct

the system of 60 points with the symmetry order of 12, all we need are 5 basis points,

and the rest of the points can be determined by a set of symmetry operators.

Figure 3.1: Symmetry of the tetrahedra structure. Red arrows are
C2 rotational symmetry axis, and the green arrows are C3 rotational
symmetry axis.

Figure 3.1 shows the symmetry axes of the tetrahedra structure, which is equivalent

to the symmetry of Q = 60 in table 3.1. The green arrows represent the C3 symmetry

axis, and the red arrows represent the C2 symmetry axis. A Cn axis is a rotational

symmetry axis , with the property that if the whole system is rotated 360
n

degrees

around the symmetry axis, the new system will appear to be the same as before the

symmetric operation. [4]

In order to test the reproducing kernel, described in last section, equation 3.2.1
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has been solved for all t-designs consisting of an quadratic number of points. In all

results the cubature weights, w, where equal, as expected.

3.4 Beamformer response using cubature rule

Use of the cubature rule, for numerical integration on the sphere, results in the

following decomposition constants for the beamformer response

αn,m
cub =

Am
n

Rn(a, r0)
=

1

Rn(a, r0)

Q∑
q

wqΦa(x0, xq)Y m
n (xq), (3.4.1)

where the cubature weights can be found from equation 3.2.1, by using the repro-

ducing kernel. The cubature weights are equal if the system is a spherical t-design.

Using the cubature rule results in the following beamformer response (see equation

2.2.5)

bN(x) =
N∑

n=0

n∑
m=−n

1
Rn(a,r0)

Q∑
q

wqΦa(x0, xq)Y m
n (xq) · Y m

n (x)

m

bN(x) =
Q∑
q

[
N∑

n=0

1
Rn(a,r0)

n∑
m=−n

wqY m
n (xq) · Y m

n (x)

]
Φa(x0, xq) .

(3.4.2)

In the framed version of equation 3.4.2, it can be seen that the beamformer re-

sponse, bN(x), steered in the direction, x, can be found by summing up the wave

field, Φa(x0, xq), at the Q microphone positions, xq, which are each multiplied by the

factor in the square brackets of equation 3.4.2. The factor multiplied at each micro-

phone signal is independent of the direction of the incoming field, but still depends

on the radius from where the incoming field originates, r0, as well as the steering

direction, x.
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3.5 Error evaluation

Now that we have an expression for finding the decomposition constants of the beam-

former response from a discrete set points on the sphere, we are able to evaluate

an error. The error to be evaluated can be found by comparing the decomposition

constants determined numerically by 3.4.1, with the ideal constants defined to be

2.2.3

αn,m
ideal = Y m

n (θ0, φ0) . (3.5.1)

If it is possible to recreate the ideal decomposition constants, then it is possible to get

the ideal beamformer response. The decomposition constants depend on the angle of

incidence, x0, therefore

εn,m(x0) = αn,m
cub (x0)− αn,m

ideal(x0). (3.5.2)

By finding the mean square error through an integration over x0, we get an expression

for the error that is independent of the angle of incidence, as

msem
n = 1

4π

∫
S2

|εn,m(x0)|2 ds(x0)

m
msem

n = 1
4π

∫
S2

|αn,m
cub (x0)− αn,m

ideal(x0)|2 ds(x0).

(3.5.3)

In this way, it is possible to optimize a system so that the general performance

increases in all directions. msem
n still depends on the degree and order of spherical

harmonics as well as the frequency. Equation 3.5.3 can be written as

msem
n =

1

4π

∫
S2

αn,m
cub αn,m

cub︸ ︷︷ ︸
A

+ αn,m
idealα

n,m
ideal︸ ︷︷ ︸

B

−αn,m
cub αn,m

ideal︸ ︷︷ ︸
C

−αn,m
cub αn,m

ideal︸ ︷︷ ︸
D

 ds(x0), (3.5.4)

resulting in four separate integrals, with integrands denoted by A, B, C and D.
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Integral of A: This first term involves the integral of constants found by the cuba-

ture rule integral. Inserting these constants from equation 3.4.1 we get

∫
S2

αn,m
cub αn,m

cub ds(x0) =
∫
S2

1
|Rn(r0,a)|2

∑
q1

wq1 · Φ(x0, xq1) · Y m
n (xq1)

·
∑
q2

wq2 · Φ(x0, xq2) · Y m
n (xq2)ds(x0).

(3.5.5)

Inserting the wave field on the sphere, Φ, from equation 1.5.13 we get

∫
S2

αn,m
cub αn,m

cub ds(x0) =
∫
S2

1
|Rn(r0,a)|2

∑
q1

[
wq1Y

m
n (xq1)

∞∑
n′=0

n′∑
m′=−n′

Rn′Y m′

n′ (x0)Y m′
n′ (xq1)

]
·
∑
q2

[
wq2Y m

n (xq2)
∞∑

n′′=0

n′′∑
m′′=−n′′

Rn′′Y m′′
n′′ (x0)Y

m′′

n′′ (xq2)

]
ds(x0)

.

(3.5.6)

The only terms dependant on the integration variable, s(x0) are Y m′

n′ (x0) and

Y m′′
n′′ (x0). The orthogonality of the spherical harmonics (see 1.4.4) results in

n′′ = n′ and m′′ = m′, therefore

∫
S2

αn,m
cub αn,m

cub ds(x0) = 1
|Rn(r0,a)|2

∑
q1

∑
q2

wq1wq2Y
m
n (xq1)Y m

n (xq2)

·
∞∑

n′=0

n′∑
m′=−n′

|Rn′|2 Y m′
n′ (xq1)Y

m′

n′ (xq2)

.

(3.5.7)

Integral of B: The second term, that only involves the ideal decomposition con-

stants, is more simple

∫
S2

αn,m
idealα

n,m
idealds(x0) =

∫
S2

|Y m
n (x0)|2 ds(x0) = 1. (3.5.8)
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Integral of C: This third term involves both the numerically computed and ideal

decomposition constants. We have

∫
S2

αn,m
cub αn,m

idealds(x0) =
∫
S2

1
Rn(r0,a)

∑
q

wqΦ(x0, xq)Y m
n (xq)Y

m
n (x0)ds(x0)

=
∫
S2

1
Rn(r0,a)

∑
q

wq

(
∞∑

n′=0

n′∑
m′=−n′

Rn′(a, r0)Y m′
n′ (x0)Y

m′

n′ (xq)

)
Y m

n (xq)Y
m
n (x0)ds(x0)

= 1
Rn(r0,a)

∑
q

wqY m
n (xq)

∞∑
n′=0

n′∑
m′=−n′

Rn′(a, r0)
∫
S2

Y m′
n′ (x0)Y

m
n (x0)ds(x0) · Y m′

n′ (xq).

(3.5.9)

Again by using the orthogonality properties of the spherical harmonics, resulting

in n′ = n and m′ = m, it is easy to see that:

∫
S2

αn,m
cub αn,m

idealds(x0) = 1
Rn(r0,a)

∑
q

wqY m
n (xq)Rn(a, r0)Y

m
n (xq)

=
∑
q

wqY m
n (xq)Y

m
n (xq)

(3.5.10)

Integral of D: This last term D, can easily be shown to be the same as term C.

∫
S2

αn,m
cub αn,m

idealds(x0) =
∑

q

wqY m
n (xq)Y

m
n (xq) (3.5.11)

In summing up these four terms, the msem
n can be rewritten as

4π ·msem
n = 1− 2

∑
q

wqY m
n (xq)Y

m
n (xq)

+ 1
|Rn(r0,a)|2

∑
q1

∑
q2

wq1wq2Y
m
n (xq1)Y m

n (xq2)
∞∑

n′=0

n′∑
m′=−n′

|Rn′|2 Y m′
n′ (xq1)Y

m′

n′ (xq2).

(3.5.12)

Equation 3.5.12 can be written much shorter, by the use of vector and matrix notation,

as
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msem
n = 1

4π

[
1− 2−→w T−→v + 1

|Rn(r0,a)|2
−→w T M−→w

]
, (3.5.13)

where w is a vector of length Q containing the cubature weights, wq, and −→v is a

vector, also of length Q, with elements defined as

vq = |Y m
n (xq)|2 , (3.5.14)

and M is a matrix of dimensions (Q x Q), with elements defined as

Mq1,q2 = Y m
n (xq1)Y m

n (xq2)
∞∑

n′=0

n′∑
m′=−n′

|Rn′(r0, a)|2 Y m′
n′ (xq1)Y

m′

n′ (xq2). (3.5.15)

Using equation 3.5.13, it is possible to calculate an error, msem
n , from the coordi-

nates of the Q microphone positions on the sphere, −→x = {x1, x2, ..., xq, ...xQ}. The

error, msem
n , is furthermore independent of the angle of incidence of a present wave

field. However, the msem
n is still dependant on the frequency through the Bessel

functions in Rn. msem
n also depends on all the spherical harmonics of all degrees and

orders through M . (see equation 3.5.15).

An example of the msem
n for the t-design previously described having 64 points

on the sphere (table 3.1), can be seen in figure 3.2, at ka = 1. Note that the error on

the decomposition constants of the same degree, n, does not vary much. The error

increases rapidly when the order increases. The effect on the actual beamformer

response can be seen in figure 3.3, which shows the same system as shown in figure

3.2. For N = 5, the error is not noticeable on the beamformer response, but for

N = 6 the error becomes significant.
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Figure 3.2: |msem
n | of the decomposition constants, αn,m

cub , for the t-design having Q = 64
at ka = 1. The degree n is denoted on the horizontal axis, having the order m ranging from
−n to n, plotted symmetrically around n.(i.e. see n = 7)

Figure 3.3: |bN | for the t-design with Q=64. Left shows a beamformer response with no
noticeable error at N = 5. At N = 6 on the right, the error is too large to get the correct
beamformer response.
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3.6 Chapter summary

In this chapter, it has been shown how to perform the spherical integral used to

determine the decomposition constants of the SHB-response. Two numerical methods

are described, both based on the cubature rule. The first method is used to determine

the cubature weights by the use of the reproducing kernel. This method requires a

quadratic number of integration points. The second method uses equal cubature

weights, and the positions of the integration points determine how high a degree of

spherical polynomials is possible. The designs of point positions found by Hardin

and Sloane are described, and they are also characterized by having high order of

symmetry.

The new SHB response using the cubature rule is shown (equation 3.4.2), followed

by an expression determining the error of the decomposition constants (equation

3.5.13), and can be used for optimization of an array.



Chapter 4

Analysis, optimization and
implementation

An analysis of the Spherical Harmonics Beamforming method is made in this chapter,

which leads to an optimization of the microphone array. The analysis includes a se-

lection of the optimal surface of the beamformer sphere, as well as the stability of the

system when phase and amplitude errors on the microphones occur. After the opti-

mization follows a description of the geometrical properties of the selected optimized

array. At the end, a practical implementation method of the SHB is given, since the

microphones are not capable of measuring the velocity potential, as presumed in the

theoretical version of the SHB.

4.1 Surface of the sphere

Theoretically, it is possible to use both types of spheres; a hard scattering sphere with

the front of the microphones aligned with the surface of the sphere, or an acoustically

transparent sphere with the microphones set in a lattice. The only requirement is

that the appropriate radial part, Rn, from table 1.1 is chosen when calculating the

decomposition constants (equation 3.4.1).

One disadvantage of using the hard sphere, is that the scattering surface ”colours”

the wave field. The transparent sphere allows the wave field to travel undisturbed

through the sphere, at least at low frequencies (at higher frequencies the microphones
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and the lattice-structure can cause reflections and diffraction).

In the equation, for determining the beamformer response, the division by the

radial part, Rn(a, r0), occurs (see equation 3.4.2). This requires that Rn(a, r0) is

never zero. This only holds for the hard sphere, where Rn is a combination of spher-

ical Bessel and Neumann functions. For the transparent sphere, Rn is described by

spherical Bessel functions only. In figure 4.1 the two types of the radial part, Rn, are

shown.

Figure 4.1: |Rn| as a function of ka/π, at different values of n, for
the transparent sphere (top) and the hard sphere (bottom).

The zeros of the radial part for the transparent sphere would result in great

uncertainty for the beamformer response at certain frequencies (i.e. ka = π). This is

why the hard sphere is chosen as the best solution.
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4.2 Stability

In this section, an investigation of the stability is made to evaluate how the beam-

former response reacts to an error at different frequencies and degrees, N , of spherical

harmonics. This is done by simulating a random error at each microphone, at differ-

ent values of N , and at different values of the frequency, ka. Firstly, the consequences

of a phase error is investigated.

The simulations are made by applying a random normally distributed phase error

to each microphone, and then seing how it affects the beamformer response. Applying

the same error to all microphones would not result in any error at the normalized

absolute value of the beamformer response, since it is the internal phase and ampli-

tude difference between the microphones that results in the response. The velocity

potential, with the applied phase error, is

Φph,q = Φqe
iσphγq , (4.2.1)

where σph is the standard deviation of the normally distributed phase errors. γph =

{γph,1, ...γph,Q} is a set of random normally distributed numbers, with a standard

deviation of 1. The phase error at microphone number q, is then σphγph,q.

Figure 4.2: Absolute value of beamformer response of t-design
having Q=64 at ka=4 and N=5. Left: No phase error attached.
Right: Phase error resulting in an error of the beamformer response
of ε = 0.01.
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In order to evaluate the error of the beamformer response, we need to define an

expression of the error of the beamformer response. The mean absolute error on the

beamformer response from the phase error, relative to the maximum of the response

without any phase error, is defined as

εph(bN) ≡ 1

4π

∫
S2

|bN(x)− bN,ph(x)|
|bN,max(x)|

ds(x), (4.2.2)

where bN(x) is the beamformer response with no phase error attached, and bN,ph is

with the phase error. Allowing a maximum error on the beamformer response of

εph(bN) = 0.01, the maximum allowable phase error as a function of ka and N , can be

simulated. Figure 4.2 shows an example where the error on the beamformer response

is εph(bN) = 0.01. The effect of the error is slightly noticeable on the sidelobes (right

picture), but the response can still be used to determine the direction of the incoming

wave.

Figure 4.3: Limit of phase stability, where εph = 0.01 for t-design having
Q=64, at N = 2, 4, 6. The error bars show the standard deviation of the cal-
culated graphs made from 30 simulations, having random normally distributed
phase error.
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By using the limit for the error of the beamformer response of εph(bN) = 0.01, a

random phase error σphγq has been simulated in MATLAB, where the standard devi-

ation σph, has been decreased until εph(bN) = 0.01 is achieved. This is done for N =

{1, 2, 3, 4, 5, 6} at the following frequencies, ka = {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2, 3, 4, 6, 7,
8, 9, 10} by using the same set of Q random errors σphγph = σph{γph,1, ..., γph,Q}. This

is simulated 30 times by using a new set of random normally distributed phase errors.

The average of σph from these 30 simulations are illustrated in figure 4.3, including

the error bars showing the standard deviation of the results from the 30 simulations.

The figure illustrates that an phase error of around 8◦ is acceptable at ka = 2 for

N = 2, but not for N = 4 or 6, which demand a phase error of less than 2◦ and 0.2◦

respectively (see figure 4.3).

Figure 4.4: Stability of t-design having Q =64. Maximum allowed standard
deviation of random normally distributed error, for the phase error (top) and
the relative amplitude error (bottom). (All calculations are the mean value
from 30 simulations, and the standard deviations from this are shown in figure
4.3)

The same simulations have been made to evaluate the effect of an error in the

amplitude of each microphone. The error σampγq is again assumed to be random
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normally distributed, having the standard deviation σamp. The velocity potential at

microphone q, with an amplitude error attached, is defined as

Φamp,q ≡ Φq(1 + σampγq). (4.2.3)

Figure 4.4 shows the results for both the phase error and the amplitude error, for the

t-design having Q = 64, at N = 1 to N = 6.

The same simulations have also been made for systems with a lower number of

points. Figure 4.5, shows the the results of maximum allowable σph from the three

t-designs having 24, 48 and 64 points, for N=3. Note that a higher number of points

result in a higher allowable random normally distributed phase error.

Figure 4.5: Maximum allowable σph, at degree N = 3, for the three
different t-designs having 24, 48 and 64 points respectively.

The analysis of the stability generally shows that the systems are most stable at

frequencies from ka = 2 to ka = 6 (dependant on N). The higher the N , the more

the stability falls at lower frequencies. It will therefore probably be a problem to

retrieve the higher degrees, N , of the beamformer response, bN , at low frequencies
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(i.e. at ka = 1 and N = 6 the maximum allowed standard deviation of the random

normally distributed amplitude error should be lower than 0.03%. See figure 4.4).

4.3 Optimization

To find the best system of microphones for performing Spherical Harmonics Beam-

forming, it is necessary to look at what parameters need to be optimized. The avail-

able parameters are:

1. Radius of sphere, a

2. Frequency, f

3. Maximum degree of spherical harmonics to include, N

4. Number of microphones, Q

5. Microphone positions, x = {x1, ..., xq, ...xQ}

The radius of the sphere, a, and the frequency, f , are connected, since the beam-

former response calculations are made as a function of ka = 2πf
c

a; if the radius of the

sphere is increased, then the frequency range is moved relatively down. The radius of

the sphere can therefore be chosen to get the desired frequency range. There will of

course exist some practical limitations of the radius (e.g. the size of the microphones

sets a lower limit). In further optimization analysis, ka will be used as a value for

the frequency and radius.

The higher degree of spherical harmonics, N , (and thereby higher order of Bessel

functions) included in the beamformer response, results in a better resolution, (i.e.

smaller FWHM) as well as larger attenuation of sidelobes. The highest possible N

is therefore desired. Furthermore, N is connected to the number of microphones, Q,

since in general higher Q results in higher N .

Q is not the only parameter determining N . The final parameters to be tuned

are the positions of the microphones. Having Q microphones gives us 2Q parameters,
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since the position of each microphone is described by two coordinates, xq = {φq, θq}.
The optimization can be performed by minimizing the errors of the decomposition

constants, msem
n , up to the desired degree at most N , as described by equation 3.5.13.

For a desired beamformer response of degree N , there exist (N+1)2 errors to minimize

(since n = {0, 1, 2, ..., N)} and m = {−n, ..., n}). This is why the following expression

is introduced, in order to find the average error of the decomposition constants of

degree n and order m up the a maximum degree of N.

ν(ka, N) ≡ 1

(N + 1)2

N∑
n

m∑
m=−n

|msem
n (ka)| (4.3.1)

In this way, there is only one parameter to minimize instead of (N + 1)2.

The minimization in this project is done by moving the points on the sphere

(the microphone positions), until the nearest local minimum of ν(ka, N) is found.

ν(ka, N) depends also on the positions of the points through msem
n (see section 3.5).

The nearest local minimum of ν(ka,N) has been found, when the displacement of

any single point 10−10[rad] in any direction (on the surface of the sphere) did not

result in a lower value of ν(ka,N).

Finding the nearest local minimum of ν(ka, N) at a particular ka and N , does

not necessarily mean that the global minimum is found. This is why the following

strategies have been considered and tried out.

1. Minimize nu(ka,N) from a random start guess of the microphone positions

(possibly by picking the best result of many different start guesses).

2. Use one of the already optimized t-designs.

3. Minimize nu(ka, N) and use existing t-designs as a start guess and keep the

cubature weights equal.

4. Minimize nu(ka,N) and use existing t-designs as a start guess, and have a

square number of microphones, Q, that allows unequal cubature weights, w,

through the reproducing kernel.
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5. as suggestion 3 and 4 but keeping the symmetry of the existing t-design.

The problem of using the first suggestion (having a random start guess of the

microphone positions) is that, ν(N) has many local minima. When the microphones

are moved, the system will fall into the minimum nearest the starting guess, which

is not necessarily the global minimum. Using this approach requires a lot of different

starting guesses as well as a lot of computational time, before finding the global

minimum or any minimum close to the global minimum. Another disadvantage of

this strategy, is that no symmetry of the point positions exist, resulting in a possible

variation of the performance in different directions. In the test of this strategy, the

point positions appeared to spread regularly out over the surface of the sphere when

minimizing ν(ka, N).

The second suggestion is using one of the existing t-designs optimized (by Hardin

and Sloane) for exact integration of spherical polynomials of degree t. The function

to be integrated is the product between the velocity potential, Φa, and the spherical

harmonics. The velocity potential, Φ, is described by a combination of spherical

harmonics and spherical Bessel and Neumann functions that are frequency dependent.

The existing t-designs are not necessarily the optimal setup to find the decomposition

constant up to a degree of t (initial simulation shows more likely up to a degree

of t/2). Figure 4.6 shows the performance of the t-designs having Q = 60 and

Q = 64, by plotting ν(N, ka) as a function of ka at different values of N . Note that

ν(ka, N) < 0.001 for N ≤ 5, for frequencies ka < 6. Something else interesting is

that the t-design which has Q = 60 has lower ν(ka, 6) than for Q = 64. In other

words, the existing t-design of 60 points is better at creating a beamformer response

of degree N = 6 than for the t-design having 64 points, and in a much wider frequency

range. Furthermore, both of these t-designs showed much lower ν(ka, N) than any

designs found by minimizing ν(ka,N) from a random starting guess of the microphone

positions.

The third suggestion, is to try to optimize the existing t-designs while keeping

equal weights in the numerical integration. Since the t-designs are already optimized

by using equal weights, this strategy did not show any improvement, neither at low
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Figure 4.6: ν(ka,N) for t-design having Q = 60 (top) and Q = 64 (bottom).

(ka = 1) nor high (ka = 7) frequencies.

The fourth suggestion, is again to use the existing t-designs and optimize them by

allowing the cubature weights to be unequal. This is done by using the reproducing

kernel to calculate new cubature weights after each move of the points, and requires

the number of points to be quadratic (see section 3.3). This strategy showed a slight

improvement of ν(ka,N) around the optimizing frequency, but a worsening at other

frequencies.

The last tried approach is using the existing t-designs as a start guess, and then

finding the nearest local minimum of ν(ka,N), while still keeping the symmetry. By

minimizing ν(ka,N) of the t-design with 60 points while keeping the symmetry, the

weights would still have to be kept equal (since the number of points is not quadratic,

see section 3.3). Since this system is already optimized having equal weights, it is not

possible to minimize ν(ka,N) further.
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For the t-design with 64 points, unequal weights can be allowed, since 64 is a

quadratic number, and are found by the use of the reproducing kernel (see section

3.2). This optimization is tried out at different frequencies, in order to extend the

frequency range at N = 6.

The values of ν(N, ka) before the optimization of the t-design with 64 points,

is seen as the yellow line in the bottom picture in figure 4.6 and the blue line in

figure 4.7. The results after the optimization at ka = 1 and ka = 7 can also be

seen in figure 4.7. Optimizing at the high frequency of ka = 7, showed a slight

improvement at high frequency by having a lower ν(ka,N). Optimizing at the lower

frequency ka = 1 showed a significant improvement at low frequencies, and a slight

improvement at high frequencies. Optimizing at lower frequencies than ka = 1, did

not show any improvement. In the stability analysis, the system showed anyway to

be very unstable at low frequencies, allowing a maximum standard deviation of a

normally distributed phase error of 0.01◦ at ka = 1 (see figure 4.4).

To see what effect this optimization has on the actual beamformer response, bN ,

at degree N = 6, the beamformer response has been simulated both before and after

the optimization, and the result can be seen in figure 4.9.

point number x y z
1 -0.32134051642889 0.91871757250132 -0.22956109095073
2 0.11889351497826 0.98736875238214 -0.10472477698924
3 -0.53994094605482 -0.82075188837576 -0.18662827358430
4 -0.12503345547114 0.86604541844656 0.48407847318453
5 0.69237632636429 0.65300799683460 0.30691298239134
6 0.57735026918963 0.57735026918963 -0.57735026918963

Table 4.1: Coordinates of the 6 basis points of the optimized system of points with tetra-
hedra symmetry.

Optimization of higher N than 6 has been tried, but without any significant success

for systems of 64 points or less. The best improvement after the optimization is made

using the existing t-design with 64 points as a start guess. The optimization is made

by moving the microphones, while still keeping the tetrahedra symmetry. This is

done until the nearest local minimum of ν(ka, N) at ka = 1 and N = 6 is found,

while allowing unequal weights in the numerical integration by using the reproducing
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Figure 4.7: ν(ka,N) for t-design having Q = 64 at N = 6, optimized at the
frequencies ka = 1 and ka = 7. ’o’ indicates the optimization frequency.

Figure 4.8: t-design with Q = 64 optimized at ka = 1. Figure shows ν(ka,N)
at all N = {1, 2..., 7}

Figure 4.9: Resulting beamformer response at ka = 1. Left: existing t-design
having Q=64 points. Right: Same t-design optimized at ka = 1 for N = 6.



4.3. OPTIMIZATION 55

kernel. The coordinates of the 6 basis points are listed in table 4.1, and the rest of

the 64 points can be found by using the symmetry operators, C3 and C2, described

in section 3.3. The first 5 points will each result in 11 new points. Point number 6 is

placed on a C3 symmetry axis, which means that the symmetry operators will result

in 3 new points. The total number of points will therefore be: Q = 5x12 + 1x4 = 64.

The minimum, average and maximum values of the cubature weights, belonging

to the 64 optimized points, found by solving the matrix equation, Gw = e (see

section 3.2), are listed in table 4.2. The sum of the cubature weights, represents the

integration of a function on the sphere with a constant value of 1, and should always

equal 4π.

wmin wavg wmax

∑
w

0.1271 0.1963 0.2262 12.5664 ' 4π

Table 4.2: The minimum, average, maximum and sum of the 64
cubature weights (first four decimals shown).
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4.4 Geometrical properties of selected array

In this section, we investigate the geometrical properties of the optimized array.

Figure 4.10: A) Optimized 64 points on the sphere. The black equator line parts
the sphere in two identical half spheres. The red line parts the sphere in the same
identical half spheres because of the symmetry. B) The delaunay triangulation of the
points.

Figure 4.10 shows the position and symmetry of the optimized 64 points on the

sphere, as well as the delaunay triangulation1. The tetrahedral symmetry of the

points makes it possible to part the sphere in two identical half spheres at the equator

(θ = 90◦). The two vertical red lines in figure 4.10 A, result in the same two half

spheres. The symmetry order of 12, makes it furthermore possible to part the sphere

in 12 identical shells with 5 points on each, with the last four points placed at corners

of the 12 shells.

The upper frequency limit of around ka = 7 (see figure 4.8) can be explained from

the delaunay triangulation. In the conventional Delay and Sum beamforming, the

upper frequency limit is determined by the microphone spacing, where the distance

between them may not exceed the half of the wavelength, λ, of the incoming wave

(see [10] and [3]). A frequency limit of ka = 7 results in the following minimum

wavelength

1Given a set of data points, the Delaunay triangulation is a set of lines connecting each point to
its natural neighbours.
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ka = 2π
λ

a = 7

m
λ = 2π

7
a = 0.8976 · a,

(4.4.1)

allowing a maximum spacing of the microphones of d(ka=7) = λ
2

= 0.449 · a. Table 4.3

lists the minimum, average and maximum distances from the delaunay triangulation.

(Note how close davg is to d(ka=7).)

dmin davg dmax

0.3169 · a 0.4752 · a 0.5446 · a

Table 4.3: The minimum, average and maximum distances of the
delaunay triangulation of the optimized 64 points.

4.5 Practical implementation of SHB

The SHB-response was in chapter 3 expressed as a weighted sum of the velocity

potentials, Φa(x0, xq), at the microphone positions, xq = (θq, phiq), on the sphere of

radius a (see equation 3.4.2). Equation 3.4.2 can also be written as

bN(x) =

Q∑
q

Wq(N, a, r0, xq, x, ω)Φa(x0, xq), (4.5.1)

where the weights, Wq are found as

Wq(N, a, r0, xq, x, ω) =

[
N∑

n=0

1

Rn(a, r0)

n∑
m=−n

wqY m
n (xq) · Y m

n (x)

]
. (4.5.2)

The velocity potential, Φa(x0, x), holds information about the phase of the wave field.

However, the microphone can not measure the velocity potential. The microphone

measures the real value of the sound pressure, related to the velocity potential as (see

equation 1.3.4)
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p(t) = Re

{
ρ0

∂Φ

∂t

}
. (4.5.3)

Throughout this thesis the implicit time factor, eiωt is assumed, resulting in

p(t) = Re {iωρ0Φ} . (4.5.4)

In the practical implementation, the phase information of the signals can be obtained

through a Fast Fourier Transformation FFT. The FFT is a fast implementation of

the Discrete Fourier Transformation, DFT. The L-point DFT can, from L samples

of the signal p(t), be found as

P (ωη) =
L−1∑
l=0

p(tl)e
−iωηl, (4.5.5)

where p(tl) is a sample of the sound pressure, at time tl, determined by the sampling

frequency as tl = l
fs

. L is the number of samples, and l = 0,... N-1, denotes the sample

number. The angular frequency , ωη is related to the real frequency as ωη = 2πfη,

where η = {0, 1, ...L
2
} denotes the number of the possible discrete frequencies from

the L-point DFT. The frequency resolution is therefore determined by the number of

samples, L, and the sampling frequency , fs, as ∆f = fs

L
. The discrete frequencies are

found as fη = ηfs

L
. To perform the FFT, the number of samples must agree L = 2%

where % ∈ N (i.e. L = 2, 4, 16, 32, ..., 1024, ...).[12]

The FFT output, Pq(ωη), made on the signal from microphone number q, holds

information about the amplitude and the phase of the sound pressure at the micro-

phone and at the specific frequency ωη. To perform the SHB, it is the internal phase

and amplitude difference that determines the absolute value of the beamformer re-

sponse. P (ωη) can therefore be used instead of the velocity potential when calculating

the beamformer response. By using P (ωη), it is furthermore possible to select the

frequency of interest.
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Figure 4.11 shows the signal flow in the practical implementation of the SHB

method. The microphones on the right measure the sound field, which is sampled

and sent through the FFT routine, whereafter the actual SHB routine starts. The

SHB is performed by first multiplying the weights, Wq, from equation 4.5.3 and then

adding all the results, ending up with the beamformer response, b.

Figure 4.11: Signal flow diagram of the implementation method using FFT.

Figure 4.12 illustrates an example from a simulation of two incoming plane waves

at different frequencies and different angles of incidence. The signals at each micro-

phone of the array, are sampled at the sampling frequency fs = 8kHz. The FFT of

L = 1024 samples from each microphone are made, after which the spherical harmon-

ics beamforming is executed. The left picture shows the SHB method performed on

the output of the FFT’s for η = 256, equivalent to the frequency fη = 256fs

L
= 2000Hz,

and the right picture for η = 261, equivalent to the frequency fη = 261fs

L
= 2031.25Hz.

The output of the FFT can also be used to determine the intensity of the sound

field at a given frequency. It has not been examined closer in this thesis.
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Figure 4.12: Simulations of SHB on signals after the FFT. ’+’ indicates the direction
in which a signal of frequency 2030 Hz approaches from, and ’*’ indicates the direction
in which a signal of 2000 Hz approaches the array from. (A) SHB performed at
fη=256 = 2000Hz. (B) SHB performed fη=261 = 2031.25Hz

4.6 Chapter summary

In this chapter, an analysis of the beamformer properties has been investigated, lead-

ing to the optimization of a spherical beamformer based on 64 microphones placed

in alignment with the surface of a hard sphere. The surface was chosen to be hard

instead of transparent in order to avoid division by zero in calculation of the beam-

former response. The stability was investigated, showing to be most stable at around

ka = 5 for N = 6, and increasingly unstable at lower frequencies, see figure 4.4. The

final design, chosen after the optimization, keeps the tetrahedra symmetry from the t-

design of 64 points. The design is capable of getting a beamformer response of degree

6 at frequencies between ka = 1 and ka = 6 (See figure 4.8). The investigation of the

geometrical properties showed similarity between the distances of the microphones

and the upper frequency limit of around ka = 7. Finally, a method for implementing

the SHB method, by using FFT, was shown, and simulation using the method was

made. Furthermore, the method made it possible to distinguish signals of different

frequencies.



Chapter 5

SHB versus Delay and Sum
Beamforming

In this chapter, the performance of the beamformer technique using spherical har-

monics (SHB), is compared with the more conventional Delay and Sum Beamforming

(DSB) technique. This is done in order to show the advantages of using SHB.

5.1 Introduction

The DSB method is the oldest and simplest method for determining the direction of

an incoming wave field and is still commonly used. The DSB-method is therefore the

most obvious to compare the SHB-method with.

5.2 Delay and Sum Beamforming

When an incoming plane wave, with the wave number vector ~k = −k~κ, approaches an

array of Q microphones placed at locations rq (q = 1, 2, ..., Q), from the direction ~κ,

each microphone will measure the same pressure signals, but with an internal phase

difference, because of their spatial positions. By applying appropriate delays, ∆q(~κ),

to the signals from each microphone, pq, and then adding the results, it is possible to

enhance signals from a specific direction and suppress signals from other directions.



5.2. DELAY AND SUM BEAMFORMING 62

Figure 5.1: Illustration of circular microphone array steered in the correct
direction from where a plane wave propagates from.

This is called Delay and Sum Beamforming (DSB), and the beamformer response is

[9]

z(~κ, t) =

Q∑
q=1

pq(t−∆q(~κ)), (5.2.1)

where pq(t) is the sound pressure measured at microphone number q in the time

domain. The time delays can be found from geometrical consideration (see figure 5.1

or [9])

∆q(~κ) =
~κ · ~rq

c
, (5.2.2)

where ~rq is the position of microphone number q, and c is still the propagation speed

of sound.
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In the frequency domain, the beamformer response is a Fourier transformation of

5.2.1

Z(~κ, ω) =

Q∑
q=1

Pq(ω)e−iω∆q(~κ), (5.2.3)

where ω is the temporal angular frequency . Pq(ω) is the frequency domain version

of the measured signal at microphone number q, (in practice this could be the result

of a FFT of pq). ~k = −k~κ is the wave number vector for the expected plane wave

incident from the steering direction κ. The actual wave number vector of the incident

wave is denoted ~k0 = −k~κ0, and the pressure measured at microphone q would then

be

Pq(ω) = P0e
−i~k0·~rq , (5.2.4)

where P0 is the amplitude of the wave field. By inserting P (ω) and the time delay 5.2.2

into equation 5.2.3, we get the following frequency domain version of the beamformer

response for plane waves

Z(~κ, ω) = P0

Q∑
q=1

ei(~k−~k0)·~rq , (5.2.5)

In the near field situation, where the sound source is close to the array, we would

have to consider spherical waves instead of plane waves. Since the direction of the

propagating wave now varies throughout the array, there would have to be found a

steering direction vector for each microphone. So, instead of one steering direction

vector, ~κ, we have Q different steering direction vectors, found as ~κq all directed at

the same point. This point is called the steering point, and is the point where the

sound source is expected to originate from (see figure 5.2). The amplitude of the

pressure measured at microphone number q is inverse proportional to the distance

between the microphone and the sound source, resulting in the pressure
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Figure 5.2: Illustration of microphone array steered in the correct direction
from where an spherical wave propagates from.

Pq(ω) =
P0

|~r0 − ~rq|
e−i~k0,q ·~rq , (5.2.6)

This results in the following beamformer response for spherical waves

Z(~κ, ω) = P0

Q∑
q=1

1

|~r0 − ~rq|
ei(~kq−~k0,q)·~rq . (5.2.7)

The DSB-technique can be applied to any microphone array that is acoustically trans-

parent, as it does not account for any reflections. By using the DSB-method on the

same microphone array as optimized for spherical harmonics in chapter 5 using 64

microphones, but without the hard scattering surface, we can simulate the DSB-

response. The beamformer response is calculated by using equation 5.2.7 in near field

situations and equation 5.2.5 in far field situations. Figure 5.3 shows a simulation of

the beamformer response at the frequency ka = 3, where the source is a point source

located at (θ, φ) = (90◦, 180◦) at a distance r0 = 15a.
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Figure 5.3: Steered response for the Delay and Sum beamformer, using a
spherical array of 64 microphones.

The beamformer response using the DSB method, is also characterized by having a

mainlobe and sidelobes, as seen for the SHB using spherical harmonics. The resolution

of the DSB, measured by the FWHM of the mainlobe, depends on the aperture of the

array, and the wavelength of the incoming wave. The aperture is the spatial extension

of the array. In other words, this means that the resolution depends on the frequency,

which results in a wide mainlobe at low frequencies and a narrow mainlobe at high

frequencies. The upper frequency limit is determined by the distance between the

microphones and thereby in general the number of microphones. [10]
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5.3 Comparing Performances

To emphasize the advantage of using the SHB-method over the performance of the

DSB-method, these two techniques have been simulated using the same array of

64 microphones. The surface of the sphere is hard for the SHB, and acoustically

transparent for the DSB method.

Figure 5.4: Beamformer response sweep for a wave field incident from (θ, φ) = (90◦, 0◦), steered
in directions along the equator. Left: the delay and sum beamformer. Right: Spherical harmonics
beamformer using N = 6.

Figure 5.4 shows the results of the simulation as a frequency sweep from ka = 0.1

to ka = 10 on the vertical axis. The incoming wave is simulated coming from (θ, φ) =

(90◦, 0◦) and the beamformers are steered in directions along the equator, ranging
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from -180 to 180 degrees. The red area is the mainlobe of the beamformer response,

and the sidelobes are seen as the light blue area on each side of the mainlobe.

Figure 5.5: FWHM of the beamformer response as a function of the frequency,
for both the DSB and SHB-method at N = 6.

The SHB at N = 6 shows the same width of the mainlobe at all frequencies,

(FWHM ≈ 36.6◦). The DSB has a very wide mainlobe at low frequencies, which

makes it difficult to determine the direction of the incoming field (see also figure 5.5).

At higher frequencies, ka > 6, the DSB shows a narrower mainlobe than the SHB. At

frequencies higher than ka = 7, errors on the sidelobes occur for both beamforming

techniques because of the limited amount of microphones, Q = 64. This upper

frequency limit can be increased for both techniques by using a higher number of

microphones. It will not improve the resolution of the DSB, but will make it possible

to use higher N , and thereby achieve a better resolution for the SHB-method. The

lower MSL using SHB, can be seen in figure 5.6 showing the gain of the sidelobes.

The biggest sidelobe level using the DSB-method is around -12 dB in the frequency

range ka = 3 to ka = 7. At low frequencies ka < 2 the mainlobe of the DSB-method

is so wide (see figure 5.4) that there exists no actual sidelobes.

Using the SHB-method the biggest sidelobe is about 4 dB lower than for the DSB-

method. The usable frequency range in which the MSL is lower than -15 dB for the

SHB-method is ka = 1 to ka = 7 which is equivalent to about 2.7 octaves.
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Figure 5.6: Maximum Sidelobe Level for both the DSB-method and the SHB-
method
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5.4 Chapter summary

The beamforming method developed in this thesis (SHB), has in this chapter been

compared with the conventional delay and sum beamforming method (DSB), and has

showed significant improvement of the attenuation of the sidelobes on the beamformer

response. The DSB-method has a MSL of approximately -12 dB in the frequency

range from ka = 3 to ka = 7, and the SHB-method has an MSL of less than -15 dB

in a frequency range of around 2.7 octaves (from ka = 1 to ka = 7). Furthermore,

the resolution showed an improvement at frequencies up to ka = 6.0 (i.e. FWHM for

DSB at ka = 1 is higher than 180◦, and only 36.6◦ using SHB).

The FWHM of the DSB is smaller than for the SHB at degree N = 6 for fre-

quencies higher than ka = 6.0. The solution to this could be to use DSB at high

frequencies, or to include higher N in the SHB-method, though this results in less

attenuation of the sidelobes. Both methods showed a constant MSL at frequencies up

to ka = 7, (-12 dB for DSB and -16 dB for SHB), so at frequencies between ka = 6

and ka = 7, the user could for example choose between having good resolution using

DSB or good attenuation of sidelobes using SHB.



Chapter 6

Tests of Beamformer

In order to verify the theoretical performance of the Spherical Harmonics Beamformer

(SHB), a model has been built using the optimized array of 64 microphones described

in chapter 4. The model has been tested in various situations described in detail in

appendix A. The results of the tests are discussed in this chapter and compared to

the simulations based on theory.

6.1 Introduction

The test model of the SHB is constructed with a shell in hard plastic and with a

radius of 0.140 metres. The radius of the sphere was chosen in order to fit in all the

64 microphones, cables and plugs. The chosen radius determines the frequency range.

Choosing a bigger radius would push the frequency range down, and a smaller radius

would push the frequency range up. In figure 5.6 the Maximum Sidelobe Level was

simulated, and shows that the beamformer is capable of keeping a good attenuation of

the sidelobes, MSL < −15dB, using N = 6 up to around ka ' 7, which is equivalent

to a frequency of approximately 2.74 kHz, when the radius of the beamformer sphere

is 0.140 meter.
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Figure 6.1: The test model of the Spherical Har-
monics Beamformer, having 64 microphones.

6.2 Test and Measurement conditions

The beamformer has been tested in an acoustical reflection free room at Odense

University College of Engineering. The room is free of reflections down to 100 Hz

and up to more than 20 kHz. The SHB been tested using a 5.5” loudspeaker in a

closed cabinet as a sound source. The tests have been carried out in the following

situations:

• Test A - Single frequency source.

• Test B - Two sources at different frequencies.

• Test C - Two sources at same frequencies.

• Test D - Single sinus source at different radii.

• Test E - Single sinus source at different angular position.

• Test F - White noise source.
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• Test G - White noise source and sinus source.

• Test H - Single sinus source and reflecting plate.

A more detailed description of the tests, and the instruments, can be found in

appendix A.

The samplings frequency of 16384 Hz, and low pass filter cutting off at 6.4 kHz,

have been used in order to test the beamformer at frequencies higher than the perfor-

mance limit at 2.74 kHz. The sampling frequency is a standard in the B&K front-end

hardware and PULSE software used in the tests, as well as the low-pass filter.

6.3 Maximum Sidelobe Level

Figure 6.2 shows absolute value of the beamformer response from both the measured

data (left) and a simulation (right), for a sound source placed at the distance r0 =

2.5m and at the angular posistion (θ0, φ0) = (90◦, 180◦). The beamformer response

from both the test and the simulation are very alike, having a maximum difference

of 0.059 and an average difference of 0.0094 times the normalized value, 1, in the

mainlobe direction.

The results at other frequencies are shown in figure 6.3 as a contour plot, at degree

N = 6 (For other values of N see figure A.3). The colour represents the beamformer

response level, relative to the level at the angle of the incident spherical wave coming

from (θ0, φ0) = (90◦, 0◦) at distance r0 = 2.5m. The system shows to be stable from

around 1.2 kHz and up to around 2.8 kHz. In section 4.2 both the phase and ampli-

tude stability was investigated. At ka = 3 (equivalent to f = 1173Hz for a = 0.14)

the maximum allowed standard deviation of random normally distributed phase er-

rors, was found to be around 1◦, and the maximum allowed standard deviation of

random normally distributed relative amplitude errors was found to be around 0.02

(see figure 4.4). This is the cause of the instability of the system at low frequencies,
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Figure 6.2: Absolute value of the beamformer response from 2000 Hz sound source placed
at (r0, θ0, φ0) = (2.5m, 90◦, 180◦). Left: Results from measured data. Right: Computer
simulation.

Figure 6.3: Contour plot of the beamformer response level from test results, having the
frequency on the vertical axis and the angle φ on the horizontal axis. Incident wave from
(θ0, φ0) = (90◦, 0◦).
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and could be improved by a better calibration of the microphones. At high frequen-

cies, f > 2.8kHz, the error mostly effects the sidelobe level, and not the direction of

the mainlobe (e.g. see figure 6.3 at f = 4kHz).

In figure 6.4 showing the Maximum Sidelobe Level (MSL), from the same test as

in figure 6.3, is compared to the MSL simulated on the same array. For frequencies

f > 1200Hz the tested MSL differs less than 1 dB from the simulated MSL. The

errors at high frequencies, f > 2700Hz, are also present in the simulations, and the

frequency limit is related to the array. So, allowing a little deviation of the MSL from

the simulated values; ie. MSL < −15dB for N = 6 will result in a frequency range

from 1200 Hz to 2770 Hz. In table 6.1 the frequency range for other values of N are

shown for defined allowed limits of MSL.

Figure 6.4: Maximum Sidelobe Level (MSL), of incident wave originating
from (r0, θ0, φ0) = (2.5m, 90◦, 180◦). Simulated: ’-’, and from test: ’o’.

The SHB was also tested using a white noise sound source (Test F appendix A).

White noise is characterized by containing all frequencies in the range from 20 Hz

- 20 kHz, and by the use of the Fast Fourier Transformation, the white noise signal

can be used to test the beamformer performance at all frequencies at once. Figure

6.5 shows the Maximum Sidelobe Level found from a 20 second measurement, at

the discrete frequencies from the 1024-point FFT fn = {16, 32, ...5008}[Hz], at the

degrees N = 1, 2, ..., 6, where the white noise source is placed in direction (θ0, φ0) =



6.4. DIRECTION OF THE MAINLOBE 75

N ideal MSL FWHM allowed MSL fmin[Hz](ka) fmax[Hz](ka)
1 -6.02 dB 141.0◦ <-5 dB 130 Hz (0.33) >4000 Hz (10.22)
2 -9.54 dB 88.5◦ <-8 dB 200 Hz (0.51) 3800 Hz (9.7)
3 -12.04 dB 65.0◦ <-11 dB 390 Hz (1.00) 3500 Hz (9.0)
4 -13.979 dB 51.6◦ <-13 dB 610 Hz (1.56) 2850 Hz (7.3)
5 -15.563 dB 42.8◦ <-14 dB 870 Hz (2.22) 2770 Hz (7.1)
6 -16.902 dB 36.6◦ <-15 dB 1200 Hz (3.06) 2770 Hz (7.1)

Table 6.1: Frequency range of the beamformer at degree N, at allowed limits of MSL,
based on results from test A appendix A. The ideal MSL and the resolution, FWHM, are
also listed.

(90◦, 0◦). The frequency ranges found from test A are listed in table 6.1 with the

defined allowed MSL. (See section A.8 for more results on this test, including the

beamformer response frequency sweep in the φ-direction.)

Figure 6.5: Maximum Sidelobe Level of beamformer response, from white noise sound source
with angular position (θ0, φ0) = (90o, 0o), as a function of the frequency, and at different degree
N = 1, .., 6.

6.4 Direction of the mainlobe

The analysis of the results so far have been related to how good the beamformer is to

suppress the sidelobes. The direction of the mainlobe is also important to investigate.

The mainlobe is supposed to point in the direction from where the incoming wave

approaches the array from. One of the problems involved with the testing of this, is
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to determine the actual position, especially the angular position, of the sound source

relative to the beamformer array. This has been been achieved with a precision of

±5◦, and is relatively accurate in comparison to the beamformer resolution of 36.6◦

at N = 6. The result of this test can be found in appendix A, section A.7. The

direction of the mainlobe showed to differ less than 4◦ from the direction of sound

source in all tests.

The tests using white noise sound sources also showed good accuracy in the main-

lobe direction, which can be seen on the beamformer response frequency sweep from

test F appendix A. Figure 6.6 shows the frequency sweep at N = 6, and the direction

of the mainlobe is in the correct direction, φ = 0◦, from around 1.0 kHz and up.

Even in the high frequency area, f > 3kHz, where the sidelobe level is increased, the

direction of the mainlobe is still pointed towards the sound source.

Figure 6.6: Beamformer response level sweep, at N = 6 from white noise source.

The beamformer responses showed in Figure 6.7 are from test F, using a white

noise sound source. The figure shows that the SHB works on white noise signals,

having the mainlobe of the beamformer response pointing in the right direction, both

at the low frequency, f = 1190Hz, and at the high frequency, f = 2800Hz. Both

results have a MSL < −15dB.
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Figure 6.7: (A) White noise source placed at θ = 180◦ (southpole), and SHB
performed at f = 2800Hz. MSL = -15.14 dB. (B)White noise source placed at
(θ, φ) = (90◦, 180◦)(negative x-direction), and SHB performed at f = 1190Hz. MSL
= -15.02 dB.

6.5 Radius dependance

Analysis of the effect of the distance of the sound source has also been carried out

(see section A.6). The tests showed that it is possible to get a beamformer response

of degree N = 6 at lower frequencies (i.e. f = 800Hz) if the source is close to the

beamformer array (i.e. r0 = 0.25m). See figure A.8.

6.6 Two sound sources

The resolution has been tested by having two sound sources. If the frequency of

the two signals are different, then the FFT will separate the two signals as shown in

test B. The frequency resolution in the FFT determines how close two frequencies

can be. In this test, 1024 samples at a samplings frequency of 16384 Hz, results

in frequency resolution of δf = 16Hz. If the frequency of the two sources are the

same, they will appear in the same beamformer response. This is tested in test C,

where the internal angle between the two sources is 52◦, seen from origo. At the

low frequency, f = 624Hz, the maximum degree of spherical harmonics possible to

retrieve is N = 4, having the resolution, FWHM = 51.6◦. This resolution is not
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good enough to distinguish the two sources. At the higher frequency, f = 2432Hz,

the degree N = 6 having the resolution FHWM = 36.6◦ is possible, and now the

two sources can easily be distinguished from each other (see figure ??).

A disadvantage of having two discrete sources of the same frequency, is that the

sidelobes from one source can disturb the beamformer response of the other source,

resulting in a displacement of the mainlobes. This can also be seen in figure ?? at

the bottom, where the beamformer response is calibrated for the source on the right,

resulting in a small displacement of the mainlobe for the source on the left. The blue

rings above and below the middle of the two sources, are caused by the interference

of the sidelobes.

Figure 6.8: Beamformer response level in combination with picture. Top: At f = 624Hz
it is only possible to get the result of degree N = 4. Bottom: At f = 2432Hz a result of
degree N = 6 is possible.
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6.7 Full performance of beamformer

In the test using white noise as a sound source, the full performance of the beamformer

at all frequencies up to 6.4 kHz (the cut-off frequency of the low pass filter) can

be evaluated, at any degree N. The measurements from test F having the sound

source positioned at (r0, θ0, φ0) = (1.00m, 90◦, 180◦), are used, and the MSL is found

at all the discrete frequencies from the FFT, fn = 16, 32, 48, ..., 6400[Hz], and for

N = 1, 2, ..., 20.

Figure 6.9: Maximum sidelobe level of incident wave from sound source at (r0, θ0, φ0) =
(1.00m, 90◦, 180◦), for N = {1, 2, ..., 20}. Left: test result. Right: simulation.

Figure 6.9 shows the MSL (represented in colour) from the measurement on the

left, and from the simulation at the same conditions on the right. The performance of

the beamformer in the test situation is very similar to the simulations, only differing

significantly at low frequencies for N ≤ 6. The figure illustrates that it is possible to

get a beamformer response at higher frequencies than the 2.7 kHz, by using higher

degree, N , and still achieve a MSL of around -8 dB (green colour). This is shown

for N = 14 at f = 5300Hz in figure 6.10, again both from measured data, and from

a simulation. The resolution at N = 14 is FWHM = 17◦. Note how similar the

test and the simulations are, which confirms that the simulations are correct, and
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that the error of the sidelobes are entirely due to the array geometry (A beamformer

response without errors would have N sidelobes, seen as concentric circles around the

mainlobe).

Figure 6.10: Absolute value of beamformer response, from sound source at postition
(r0, θ0, φ0) = (1.00m, 90◦, 180◦), and frequency f = 5300, and the degree N = 14.

By using the beamformer response of the degree N, showing the best performance

at a specific frequency, it is possible to get an extended frequency range. This is done

in figure 6.11 from f = 16Hz to f = 6400, by using the beamformer responses of

degree N = {1, 2, ..., 15}. In the frequency range, f = [150Hz, 6400Hz], the MSL

is less than -7 dB. For all measurements and simulations made at high frequencies,

f > 2700Hz, the attenuation of the sidelobes around the mainlobe and in the opposite

direction of the mainlobe showed to be good, MSL < −15dB.
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Figure 6.11: Combined beamformer response level sweep of measured data from white
noise sound source placed at θ = 180◦ at a distance of 1.00 m. The beamformer response
showing the best performance at a given frequency is used. In the darkest blue areas, the
highest level of sidelobes is less than -15 dB, and in the green area at high frequencies, the
highest level of sidelobes is less than -7 dB.
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6.8 Test with reflecting wall

In a confined space such as a car cabin, or similar spaces where the spherical beam-

former would be operating, the existence of reflecting surfaces would be common.

The last test (Test H appendix A) is made to see how the beamformer would respond

to a situation having a sinus source and a reflecting surface. The reflecting surface is

placed in such a way that it reflects the incoming wave from the sound source directly

towards the beamformer sphere. The sound wave travelling directly from the sound

source to the center of the sphere, travels 1.00 meter, and the wave being reflected by

the reflecting surface, travels a total path of 2.26 meter. This results in the following

intensity level of the reflected wave compared to the intensity level of the direct wave1

Lrefl = 20 log

(
1m

2.26m

)
= −7.1dB. (6.8.1)

The result of the beamformer response level is shown in figure 6.12. As expected, the

largest mainlobe showed to be in the direction of the sound source, and a secondary

mainlobe appeared in the direction of the reflecting surface. The level of the secondary

mainlobe is -5.89 dB, and was expected to be -7.1 dB (see equation 6.8.1).

1The amplitude of the sound pressure of a spherical sound wave is inverse proportional to the
distance from its center[14]
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Figure 6.12: Combination of contour plot of the beamformer response level,
20log

(
|b(θ,φ)|

|b(θ,φ)|max

)
, and a picture of the surrounding environment around the equator.

The bright white light at φ = 85◦ is the sunshine leaking into the room and confirms
that we did get a little sunshine this summer of 2004 while the measurements were
performed.



6.9. CHAPTER SUMMARY 84

6.9 Chapter summary

In all the tests, the SHB technique showed to work on the Fast Fourier Transformed

data of the measurements, making it possible to detect signals at a desired frequency.

The results of spherical harmonics beamforming, performed on the measured data

from the test model, showed to be similar to the simulated results from the frequency

of around 1200 Hz and up for N = 6. The Maximum Sidelobe Level in the test

only differed by less than 1 dB from the simulated values, and the direction of the

mainlobe was less than 4◦ from the actual direction of the sound source. The error

on beamformer response at lower frequencies, f < 1200Hz, for N = 6, is due to the

sensitivity towards the internal phase and amplitude errors of the microphones. This

instability could be improved by better calibrations of the microphones.

The beamforming at N = 6 was possible in the frequency range f = [1200Hz, 2770

Hz] having a MSL lower than -15 dB. By combining beamformer responses at other

degrees N it is possible to extend the frequency range. This is done by using the bN

which shows the best performance at a specific frequency, and it is thereby possible

to perform the beamforming down to 130 Hz with N = 1, and up to 6400 Hz with

N = 15, with a MSL of less than -7 dB (see figure 6.11).



Chapter 7

Conclusion and Perspectives

In this chapter the conclusions of the project are drawn, followed by reflections to be

used for further studies.

7.1 Conclusion

A new method for sound source location using 3D-microphone arrays, the Spherical

Harmonics Beamforming method (SHB), has been presented.

The sound field described in spherical coordinates has been examined, and can

be described by the use of spherical harmonics and spherical Bessel functions. Sim-

ulations of the sound field were made in order to show how high degree of spherical

harmonics and order of spherical Bessel functions are needed in various situations.

The ideal function for describing the direction of an incoming wave field, the delta

function, was decomposed into spherical harmonics, and compared to the sound field

on a sphere. The examinations led to a method of extracting the angular part of the

sound field on a sphere, which required spherical integration on the sphere. This led

to the closer study of numerical integration on the sphere, due to the fact that the

sound field can only be determined at the positions of the microphones on the sphere.

Two methods, both using the cubature rule, were examined; a method to determine

the cubature weights, and spherical t-designs optimized for spherical integration by

using equal cubature weights. The examination also led to an expression of the error,
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to be used for optimization.

An analysis of the SHB method has been made, resulting in the choice of a hard

shell as the optimal surface of the beamformer sphere. In order to construct a test

model of the SHB-array, an optimization of an array of 64 microphones has been made.

The optimization was made by using the existing t-design optimized by Hardin and

Sloane, with a symmetry order of 12, but combined with the use of the reproducing

kernel resulting in unequal cubature weights. The array is optimized to be capable

of performing SHB at a degree at most 6, in the frequency range from ka = 1 to

ka = 7. Simulation of phase and amplitude errors on the microphone signals, showed

that the beamformer response is very sensitive at low frequencies and higher N, and

most stable at ka = 6 for N = 6.

The performance of the SHB method on the optimized array has been compared

with the performance of the Delay and Sum Beamforming (DSB) method on the same

array, but without the hard shell. The resolution of the DSB-method shows to be

frequency dependant, having a wide mainlobe at low frequencies (FWHM > 180◦ at

ka < 1.4), and a narrower mainlobe at high frequencies, with a Maximum Sidelobe

Level (MSL) of around -12 dB. The SHB-method showed to have a constant resolution

in the frequency range from ka = 1 to ka = 7 with a FWHM = 36.6◦. Simulations

of Maximum Sidelobe Level of SHB showed to be MSL < −15dB in a frequency

range of around 2.7 octaves.

Results from measurements, made on the test model, showed to agree with all

simulations except at low frequencies. The beamformer response of degree 6 was only

possible down to a frequency of around 1200 Hz (∼ ka = 3.07). This error is caused

by the phase and amplitude errors on the microphone signals, as expected in the

stability evaluations.

All in all, the method for localizing a sound source, by decomposing the sound

field into spherical harmonics, has been a success. Improvements and suggestions of

further studies are presented in the next section.
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7.2 Perspectives

The optimization of the microphone positions could be investigated further in order

to find a design with a wider frequency range and perhaps higher N (i.e. better

resolution). This can be done by running further computer optimizations for finding

the global (or a lower local) minimum of the errors on the decomposition constants

of the SHB-response. The optimizations could be done to achieve a higher upper

frequency limit, by optimizing at a lower N , if the resolution is less important than

the frequency range.

Calibration of the microphones should be investigated, in order to reduce the error

on the beamformer response at low frequencies, which is caused by the sensitivity

towards errors on the measured signals from the microphones. Perhaps an automized

calibration method could be developed by measuring known signals from a known

sound source placed at various positions in the room.

The microphone positions in this project are limited to a sphere, but other ways of

placing the microphones could be investigated, and still by using spherical harmonics.

Perhaps another set of microphones placed at a distance from the surface of the sphere

help to achieve a higher N or wider frequency range, could be interesting.



Appendix A

Tests

This appendix explains the tests performed on the SHB test model, and shows the

results of the tests.

A.1 Hardware

The following hardware has been used to perform the tests:

Transducer

• Spherical beamformer having 64 microphones mounted on a hard sphere in

alignment with the surface. The radius of the sphere is 0.140 m.

• 64 x B&K microphones type 4935.

Detection

• Enclosure B&K, type 3560D

• 5 x 12 channel module type 3038B

• 1 x 5 channel controller module type 7537
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• Laptop computer, 1500 MHz centrino processor

Sound source and Signal generator

• 5.5” Loudspeaker (Vifa P13WH-00 08) in 1.49 L, closed cabinet.

• B&K Sine-Random Generator Type 1024

A.2 Test Setups

All tests have been carried out in the reflection free room, at Odense University

College of Engineering. The room is acoustically reflection free in the frequency

range from around 100 Hz and up to more than 20 kHz. The general setup for all the

experiments is seen in figure A.1. All measurements are performed at a samplings

frequency of 16384 Hz, and filtered by the built-in low pass filter cutting off at 6.4

kHz.

Figure A.1: General setup for experiments with beamformer sphere in
acoustically reflection free room.
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The following tests have been performed:

• Test A - Single frequency source.

• Test B - Two sources at different frequencies.

• Test C - Two sources at same frequency.

• Test D - Single sinus source at different radii.

• Test E - Single sinus source at different angular positions.

• Test F - White noise source.

• Test G - White noise source and sinus source.

• Test H - Single sinus source and reflecting plate.

Further descriptions of the tests and the results are to be found in the following

sections:
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A.3 Test A - Single Sinus source

Purpose: To investigate how the beamformer responds to a sound field originating

from a single frequency sound source, and to see how great a degree of spherical har-

monics it is possible to achieve at different frequencies.

Setup: See figure A.1.

Test conditions: The sound source is placed at the angles (θ0, φ0) = (90o, 180o)

and at the distance r0 = 2.50m from the center of the sphere. The measurements

were performed at the following frequencies each at a duration of one second: f =

{100, 200, 220, 240, 260, 280, 300, 340, 360, 380, 400, 450, 500, 550, 600, 650, 700, 750, 800,

850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200,

2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3200, 3400, 3600, 3800, 4000}[Hz].

Results: Figure A.2 shows the beamformer response generated from the measured

data at frequency f = 2000Hz, developed to the degree of spherical harmonics N = 6.

Figure A.3 shows the result in [dB] at different degree N. Each figure shows 20log( |b(90o,φ)|
b(90o,180o)|),

at the frequencies defined in the test conditions.

Figure A.2: Absolute value of the beamformer response at N = 6 generated from
measured data. Sound source is placed at distance r0 = 2.50m and at angles (θ0, φ0) =
(90o, 180o), emitting an sinusoidal signal at frequency f = 2000Hz.
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Figure A.3: Sweep of beamformer response level from sound source with single frequency signal.
The frequency is marked on the vertical axis, and the azimuth angle with 0 in the direction of
the source on the horizontal axis. SHB performed at N = 1 to N = 6 shown at plot A to plot F
respectively.
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Figure A.4: Maximum Sidelobe Level of SHB-response at N = {1, 2, ..., 6}, from tests with single
frequency sound source.

A.4 Test B - Two single frequency sources at dif-

ferent frequencies

Purpose: To investigate how two sound sources at different frequencies affect each

others beamformer response.

Setup: As in figure A.1, but with the use of two signal generators and two loud-

speakers as sound sources. Both sound sources are placed at distance r0 = 1.00m. The

following angular positions of the sources have been used. S1:(θ0, φ0) = (90o, 135o)

and S2: (θ0, φ0) = (90o, 180o)

Test conditions: Three tests have been performed on test situation one:

• In the first measurement, source one is present with a frequency of 1520 Hz and

source two with a frequency of 2000 Hz.
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• In the second measurement, the second source is turned off, and source one is

present alone at f = 1520Hz.

• In the last measurement source two is present alone at f = 2000Hz

Results: The results from test one in figure A.5 (A) and (B) show the absolute value

of the beamformer response where both signals are present. The SHB is performed

on the FFT-output having fη = 1520 (A) and fη = 2000 (B). The results shown on

figure (C) and (D) are from the test where the respectively signals are present alone.

Pictures (E) and (F) show the difference of the above results, and the difference shows

in both cases to be less than 0.003 times the maximum response, equivalent to an

error of less than -50 dB.
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Figure A.5: A) Beamformer response focused at ffocus = 1520 having both sources present. B)
ffocus = 2000 having both sources present. C) ffocus = 1520 source one alone. D) ffocus = 1520
source two alone. E) shows difference between (A) and (C). F) shows difference between (B) and
(D).
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A.5 Test C - Test Two sources at same frequency

Purpose: To investigate the importance of the resolution in order to distinguish two

signals at same frequency.

Setup: As in figure A.1, but with the use of two signal generators and two loudspeak-

ers as sound sources. Both sound sources are placed at distance r0 = 1.00m. The

following angular positions of the sources have been used. S1:(θ0, φ0) = (90o, 210o)

and S2: (θ0, φ0) = (90o, 158o)

Test conditions: The results of the test have been made to combine the beam-

former response level with a picture of the surrounding environment, in order to see

if it is possible to distinguish two discrete sources at same frequency. Their internal

angle seen from the beamformer is 52◦. The test has been made at two frequencies;

at low frequency f = 624Hz and at high frequency f = 2432Hz.

Results: Figure A.6 shows the results. At the low frequency f = 624Hz, it is

only possible to get a beamformer response of degree N = 4, where it is difficult to

distinguish the sources as two separate sources with an internal angle of 52◦. At the

higher frequency f = 2432Hz the reponse of degree N = 6 is possible, as it is then

easier to distinguish
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Figure A.6: Beamformer response level in combination with picture. Top: At f = 624Hz
it is only possible to get the result of degree N = 4. Bottom: At f = 2432Hz a result of
degree N = 6 is possible.
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A.6 Test D - Single Sinus source at different radii

Purpose: To investigate how the distance to the source affects the beamformer re-

sponse.

Setup: See figure A.1.

Test conditions: The sound source is placed at the angles (θ0, φ0) = (90o, 180o).

The measurements are made at the distances r0 = {0.25m, 0.32m} and at the fre-

quencies f = {800Hz, 2000Hz}.

Results: Figure A.7 shows the absolute value of the beamformer response at fre-

quency f = 2000Hz. At both plots the beamformer is focused at the expected

distances of 0.25 m and 3.2 m respectively. In both situations the beamformer is

capable of detecting the source to a degree of N = 6. The Maximum Sidelobe Level

is slightly higher MSL = −14.8dB at the shorter distance than at the higher distance

MSL = 16.6dB. The ideal MSL is simulated to be 16.1 dB.

Figure A.7: Absolute value of beamformer response, |bN |, at degree N = 6, from two test
situations at frequency f = 2000Hz. Left: Source is placed at distance r0 = 0.25m, and the
Maximum Sidelobe Level (MSL) shows to be -14.8 dB Right: Source is placed at distance r0 =
3.2m, and MSL is here -16.8 dB. White ’+’ indicates the direction of the source.

Figure A.8 shows the same situation, but at frequency f = 800Hz. The left

picture is again at the close distance of r0 = 0.25m and the picture on the right has,

r0 = 3.2m. The system is expected to be unstable at this low frequency for N = 6,
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but for r0 = 0.25 the beamformer shows to be capable of detecting the direction of

the sound source, but with some error. The MSL showed to be around -12.1 dB.

The beamformer was incapable of detecting the direction of the source at the higher

distance (see right picture of figure A.8).

Figure A.8: Absolute value of beamformer response, |bN |, at degree N = 6, from two test
situations at frequency f = 800Hz. Left: Source is placed at distance r0 = 0.25m. Right: Source
is placed at distance r0 = 3.2m. White ’+’ indicates the direction of the source.
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A.7 Test E - Single Sinus source at different angles

Purpose: To investigate if the beamformer response shows maximum value in the

expected direction (i.e. the direction in which the sound source is placed).

Setup: See figure A.1.

Test conditions: The distance of the sound source is in all tests r0 = 1.00m, and

the frequency is f = 2000Hz. The position of the sound source is determined by

the use of a meter band, resulting in some uncertainty of the angle position. If the

position of the sound source is determined with an uncertainty of ±2cm at a distance

r0 = 1m, it will result in the uncertainty of the angle to be:

∆ϑsource = ± 0.02[m]

2π · 1.00[m]
· 360◦ = 1.15◦ (A.7.1)

The center of the beamformer is set to be the center of the coordinate system, but

the angular position of the sphere is also considered to have some uncertainty. This

uncertainty is evaluated to be less than 3◦. This results in the uncertainty of the po-

sition of the sound source in relation to the spherical beamformer to be less than ±5◦.

Results: Figure A.9 illustrates the results of the beamformer response from 9 dif-

ferent measurements. The angular position of the sound source is stated above each

graph, and is illustrated on the graph with a white ’+’-sign. In all results the maxi-

mum of the beamformer response was within 4◦ of the excepted angle of incidence.
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Figure A.9: Absolute value of beamformer response, bN , for different angles of the incident wave,
stated above each plot. Degree of spherical harmonics: N = 6, frequency: f = 2000Hz.
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A.8 Test F - White noise sound source

Purpose: To investigate how the beamformer will respond to a white noise signal.

Setup: See figure A.1.

Test conditions: The duration of the measurements in this test is 20 seconds,

and the samplings frequency is fs = 16384Hz. The signal is split up into 320 pieces

of 1024 samples. Each piece is Fast Fourier Transformed, and then the 320 resulting

FFT’s are averaged before the beamformer response is calculated. Two test cases are

carried out, both having the noise source at the distance r0 = 1.00m. In the first test

the angular position of the sound source is (θ0, φ0) = (90o, 0o), and in the second test

the angular position is θ0 = 180o (the south pole).

Results: Figure A.10 shows the result of the beamforming made on the 512 dis-

crete results of the FFT’s, with a frequency resolution of, 4f = fs/1024 = 16Hz.

The frequency is represented at the vertical axis. The horizontal axis shows the az-

imuth angle φ, and the colour of the colour plot represents the maximum value of the

absolute value of the beamformer response at the given frequency and given angle φ,

relative to the maximum value at all angles in dB. The six different pictures represent

the different results by using the maximum degree of spherical harmonics, from N = 1

to N = 6 respectively.

Figure A.11 shows the MSL (Maximum Sidelobe Level) of the same results as figure

A.10. The MSL is found as the biggest local minimum relative to the value at maxi-

mum of the mainlobe, positioned at (θ0, φ0) = (90o, 0o).

Figure A.12 and A.13 shows the same kind of results as plotted in figure A.10 and

A.11, but for the situation where the sound source is placed at the direction of the

south pole.
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Figure A.10: Relative beamformer response level, as a function of the angle and the frequency,
using development of spherical harmonics to a degree of max N = 1 to N = 6 respectively. The
angular position of the sound source is (θ0, φ0) = (90o, 0o). In the dark blue areas the beamformer
response level is lower than -15 dB relatively to the highest value.

Figure A.11: Maximum Sidelobe Level of beamformer response, from white noise sound source
with angular position (θ0, φ0) = (90o, 0o), as a function of the frequency, and at different degree
N = 1, .., 6.
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Figure A.12: Relative beamformer response level, as a function of the angle and the frequency,
using development of spherical harmonics to a degree of max N = 1 to N = 6 respectively. The
angular position of the sound source is θ0 = 180◦. In the dark blue areas the beamformer response
level is lower than -15 dB relatively to the highest value.

Figure A.13: Maximum Sidelobe Level of beamformer response, from white noise sound source
with angular position θ0 = 180◦, as a function of the frequency, and at different degree N = 1, .., 6.
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A.9 Test G - White noise and sinus source

Purpose: To investigate having both a sinus sound source and a white noise source

present at the same time.

Setup: The same setup as figure A.1, but having two sets of signal generator and

loudspeaker. The two loudspeakers are placed at the distance r0 = 1.00m, and at the

elevation θ0 = 90◦. Azimuth of source one is φ = 210◦ and source two is φ = 158◦.

(see figure A.14)

Figure A.14: Setup for test with both sinus source and white noise source seen from above.

Test conditions: The measurements are carried out for 1 second, at the sam-

plings frequency fs = 16384. The results are mixed with a picture of the surroundings.

The sinus signal at source one is at frequency f = 2032Hz.

Results: Figure A.15 shows the average of the 64 resulting FFT’s of the signals

from the 64 channels. It is easy to see that the signal from source one stands out at

2032 Hz. Figure A.16 illustrates the result mixed with the photo of the surroundings.

In the top picture the results of the FFT at 2032 Hz are used, and in the bottom

picture the results at 2736 Hz are used.
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Figure A.15: Average of the 64 channel FFT, scaled relative to the maximum value at
2032 Hz.

Figure A.16: Combination of contour plot and picture of surroundings. Top: Contour-plot
based on FFT result at 2032 Hz. Bottom: based on FFT results at 2736 Hz.
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A.10 Test H - Reflecting plate

Purpose: To investigate how a wave reflected on a hard plate affects the beamformer

response.

Setup: As in figure A.1, but with an hard reflecting wooden plate placed as in

figure A.18. The sound source is placed in the distance r0 = 1.00m and at the

angular position (θ0, φ0) = (78o, 180o). The reflecting plate is placed at around

(θ0, φ0) = (100o, 50o) at a distance of around r0 = 0.75m. The plate is tilted around

5 degrees in order to reflect the sound wave originating from the sound source in such

a way, so that it travels towards the center of the beamformer after the reflection.

Figure A.17: View of room having the spherical beamformer at the center repre-
sented by the red sphere. The black dot represents the position of the sound source,
and the green plate represents the reflecting wooden plate. The blue line represents
the path of the wave travelling directly, from the sound source to the beamformer.
The red line represents the path of the reflected wave.
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Test conditions: The sound source signal is a 2192 Hz sinusoidal signal, sampled

at fs = 16384Hz for 1 second. Eight pictures of the surroundings in the region from

θ = 72◦ to 108◦ and φ = 0◦ to 360◦, are taken in order to see how the beamformer

response shows the expected peaks in the direction of the sound source and the re-

flecting plate.

Results: Figure A.18 shows the result of the spherical beamforming made from

the measured data. The absolute value of the beamformer response shows a max-

imum in the direction of the sound source and a local peak in the direction of the

reflecting plate, around 0.5 the value in the direction of the sound source.

Figure A.18: Absolute value of the beamformer response, having max in the direc-
tion of the sound source (big black dot), and another big local max in the direction
of the reflecting plate (green square).

In figure A.19 the beamformer response level, found as 20log
(

|b(θ,φ)|
|b(θ,φ)|max

)
, is shown.

|b(θ, φ)|max is the maximum value of the beamformer response and should be the
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same as the direction of the main sound source. The beamformer response level is

represented as a contour plot, where the contour lines represent the values defined on

the colourbar ranging from -15 to 0 dB. The beamformer response level outside the

dark blue contour line, is lower than -15 dB, relative to the maximum of the mainlobe.

The contour plot is mixed with the picture of the surroundings, and shows to have

maximum in the direction of the sound source. The reflected wave from the plate, is

around -6 dB relatively to the wave signal directly from the sound source. (see figure

A.19).

Figure A.19: Combination of contour plot of the beamformer response level,
20log

(
|b(θ,φ)|

|b(θ,φ)|max

)
, and a picture of the surrounding environment around the equator.
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Appendix B

Symbols, units and abbreviations

B.1 Symbols

a Radius of sphere, [m]

c Speed of sound, [m/s]

f Frequency, [Hz]

fs Sampling frequency, [Hz]

i Complex unit, i2 ≡ −1

k Wave number, [1/m]
−→
k Wave number vector, [1/m]

n Degree of spherical harmonics and order of Bessel functions

m Order of spherical harmonics

q Microphone number

r Radius in spherical coordinates [m]

r0 Radius to where sound source originates [m]

rfoc Focusing radius [m]

t time, [s]
−→u Particle velocity, [m/s]

w Cubature weights
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(x, y, z) Cartesian coordinates, [m]

z(−→κ , t) DSB beamformer response, time domain

G Reproducing kernel matrix

L Number of samples

N Maximum degree of spherical harmonics

Q Number of microphones/points on sphere

Z(−→κ , ω) DSB beamformer response, frequency domain

hn Spherical Hankel function of order n

jn Spherical Bessel function of order n

nn Spherical Neumann function of order n

Am
n Decomposition constant

Hn Cylindrical Hankel function of order n

Pm
n Associated Legendre polynomials of degree n and order m

Jn Cylindrical Bessel function of order n

Nn Cylindrical Neumann function of order n

Y m
n Spherical harmonics of degree n and order m

αm
n Decomposition constant

δn,m Kronecker delta

δ(x− x0) Delta function

ε Mean error of the beamformer response

γ Random number
−→κ Steering direction unit vector

λ Wavelength

ν(ka,N) Error function for decomposition constants

∇ Gradient

θ Elevation in spherical coordinates, [◦]

θ0 Elevation of incoming wave field, [◦]

φ Azimuth in spherical coordinates, [◦]

φ0 Azimuth of incoming wave field, [◦]

ρ0 Density, [kg/m3]
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σ Standard deiviation

ω Angular frequency, [rad]

∆q(
−→κ ) Time delay, [s ]

Φ Velocity potential

∞ Infinity

B.2 Units

dB Decibel

s Seconds

Hz Hertz

kHz Kilohertz

MHz Megahertz

kg Kilogram

cm Centimeter

m Meter

rad Radians

◦ Degree

B.3 Abbreviations

B&K Brüel & Kjær

DFT Discrete Fourier Transformation

DG Directional Gain

DSB Delay and Sum Beamforming

FFT Fast Fourier Transformation

FWHM Full Width Half Max

MSE Mean Square Error

MSL Maximum Sidelobe Level

SHB Spherical Harmonics Beamforming
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Amplitude error, 48

Angular frequency, 5, 8, 58, 63

Array signal processing, 1

Azimuth, 4

Backlobe, 24

Beamformer, 1

Beamformer response, 19

Beamforming, 1

Beampattern, 19

Bessel functions, 40

cylindrical, 8

spherical, 5, 7, 8

Boundary condition, 10

Cartesian coordinate system, 4

Cubature rule, 30

quasi-Monte Carlo, 33

Cubature weight, 30

Decomposition constants, 6

Delaunay triangulation, 56

Delay and Sum Beamforming, 61

Delta function, 20, 24

Directional gain, 20

Discrete Fourier Transformation, 58

Elevation, 4

Fast Fourier Transformation, 58

Focusing radius, 22, 25

Frequency resolution, 58

Full Width Half Max, 20

Hard sphere, 7

Implementation, 57

Inner product, 31

discrete, 32

Kronecker delta, 6

Legendre polynomials

associated, 6

Mainlobe, 20

Maximum Sidelobe Level, 20

Neumann functions

cylindrical, 8

spherical, 8

Omnidirectional, 23
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Optimization, 49

Origo, 4

Particle velocity, 5

Phase error, 45

random normally distributed, 45

Planner arrays, 1

Reproducing kernel, 30

basis, 32

matrix, 30

Resolution, 20

Rotational symmetry axis, 35

Sampling frequency, 58

Sidelobes, 20

Sound pressure, 5

Spatial filtering, 1, 18

Spherical coordinate system, 4

Spherical coordinates, 4

Spherical Hankel function, 9

Spherical harmonics, 6

Spherical Harmonics Beamforming, 18

Spherical polynomials, 33, 34

Spherical t-design, 33, 34

Stability, 45

Standard deviation, 45

Steered response, 19

Surface of sphere, 43

Symmetry operators, 35

Tetrahedra

structure, 35

Time dependency, 5, 7

Transparent sphere, 7

Velocity potential, 5, 7

Wave equation, 4


